Fire-front modelling in a discrete match system

Lezheng Fang, Ben Musci, Mateo Reynoso

Introduction

- Forest wildfire, either induced by human behavior or nature itself, can occur in different scales, and post threats on human lives and properties.
- Previous research has shown that the spread of wildfire is a rather complicated dynamical phenomenon, which can be affected by a number of factors.
- In this study, we use arrays of matches to model a 1D forest, and explore the firefront propagation with controlled density and inclination angle. Major experimental findings are included in this presentation.

Experimental Setup

Data Acquisition and Analysis

*Note: Average speed resulting from automated tracking has been verified against a manually tracked flame front

1D Match Spacing Studies

• Two types of flame propagation

Results – A 1D match array density study

Flame Speed vs Match Spacing

Propagation study

Results – A 1D match array inclination angle study

Inclination angle
$$\alpha$$

$$\Delta t = \frac{a}{\tan(\alpha)} \frac{1}{v(\alpha)}$$

When
$$d > d^*$$
, $\frac{d}{\tan(\alpha)} < L$

As such, given a fixed spacing, $\alpha^* = \operatorname{atan} \frac{d}{L}$ for fire propagation.

Questions

