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1 Introduction

A recent fascination in nonlinear dynamics has been systems with locally oscillating interactors [1–3]. The

local wave-like components of these systems have been the source of novel dynamical interactions, with

one particularly striking example being the “diffraction” phenomenon seen in the scattering of a snakelike

robot off a series of posts [2]. In search of related cutting-edge phenomena, it is a natural logical step

to recontextualize the local oscillations into the waves of a fluid system. While nonlinear phenomena in

globally oscillated fluid systems have been studied extensively in laboratory settings [4–8] and theoretical

and numerical contexts [9–11], locally excited systems have gone largely untouched and may reveal unique

dynamics owing to the additional spatial parameters. While global vibration studies provide an excellent

foundation for their ease of control and reduced parameter spaces, fluid and fluid-like systems with local

oscillations are more easily motivated by natural settings and are particularly relevant in physics of living

systems [1, 12] and aquatic technology contexts [13, 14]. We began our investigation by looking at a simple

system consisting of a vibrating intruder sending surface waves across a cup of water. During this preliminary

excursion, we observed frequency and intrusion depth thresholds within which the generated waves possessed

some visual similarities to Faraday waves, a thoroughly studied fluid phenomenon which we now briefly

explain.

First described by Michael Faraday in his seminal 1831 paper, Faraday waves are a nonlinear resonance

phenomenon in fluid systems owing to parametric pumping above a certain acceleration threshold called

the Faraday instability [4–11]; the specific threshold is determined by parameters intrinsic to the fluid such

as viscosity, elasticity, and spatial dimensions [6, 8, 10]. When the whole system is subjected to vertical

oscillations above this instability, the fluid surface becomes unstable to standing waves, resulting in surface

waves that oscillate at the first subharmonic – precisely one half – of the driving frequency [5, 8, 9]. The

subharmonic fluid oscillation is rationalized as a modulation of the system’s acceleration due to gravity. To

account for the parametric pumping, the typical gravity term in the Mathieu equations for amplitudes of

fluid wave eigenmodes is replaced with an effective gravity term given by the sum of the original term and

a cosine; the new ground state solution of the modified equations is half the driving frequency [5, 6].

Depending on specific parameters of the fluid and the driving force, Faraday waves can exhibit many
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complex shapes including stripes, squares, hexagons, and even higher fold symmetries [8, 10, 11], as well as

states with multiple wave structures separated into distinct regions [7]. Inspired by the evocative striped

and cross-wave patterns observed in preliminary exploration, we set out to better understand the nature of

locally forced surface waves by investigating the effects on wave morphology of spatial parameters unique

to a locally excited system as well as parameters shared by globally excited systems. In performing this

foundational study on locally forced surface waves, we also aim to uncover the nature of the initial visual

resemblance to Faraday waves and to see if such a comparison has any real credence.

2 Methods

2.1 Experimental Apparatus

FIG. 1: Three apparatus for studying locally forced sur-
face waves. As a result of the coronavirus pandemic,
experiments were performed in three separate locations.
(A) was employed by Tarr, (B) by Barnes, and (C) by
Escontrela.

To investigate the types of surface waves produced

by local oscillatory forces, we assembled a set of ex-

perimental apparatus; due to the coronavirus pan-

demic, each group member built their own separate

apparatus seen in Fig. 1. Though the specifics of

each apparatus varied with individually available

resources, a set of common methods were employed

by each member: (1) A 6”-inner-diameter circular

plastic takeout container was filled with tap water

to height 50 mm and affixed at the bottom to a flat

surface. (2) A 3D-printed flat-end piston of length

50 mm was attached to the diaphragm of an EWA

A106 Bluetooth speaker with rubber cement. Pis-

tons were fabricated with three possible faces (cir-

cle, square, triangle) and four possible radii (5, 10,

15, 20 mm); for each circle radius, the inscribed

square and equilateral triangle were used. (3) The piston-speaker assembly was suspended over the center

of the container by a rigid stand that permitted variation of piston submersion depth. (4) To generate

the requisite waves for study, the speaker was connected to a function generator application (f Generator

V5.4.1, Thomas Gruber, EE-Toolkit.com) to drive the piston with specified waveforms. For consistency, all

experiments used sine waves at the maximum amplitude allowed by the function generator.

Each member recorded videos at 30 FPS with a smartphone camera or webcam mounted at an oblique

angle. The Tarr apparatus (Fig. 1A) had access to an AOS Technologies S-Motion high-speed camera to

record videos at 450 FPS. A clear distinction will be made between data extracted from high-speed videos

and any other camera. The clarity afforded by high-speed videos of waves enables additional analysis that

was not permitted by other cameras.
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2.2 System Parameters

As a consequence of studying locally forced waves, we highlight a set of parameters unique to our locally

driven apparatus when compared with traditional globally driven surface wave investigations, including

piston submersion depth and piston geometry. We also draw connections to existing studies on globally

driven fluid systems through common parameters like driving frequency and fluid viscosity. For each of the

following studies, we repeated the described experimental methods with piston submersion depths of 0 (flush

with the waterline), 10, 20, 30, and 40 mm and a variety of driving frequencies between 20 and 120 Hz.

2.2.1 Piston Shape

We compare the resultant wave morphologies for pistons of a single radius (20 mm) with three different face

shapes. We also briefly explore the flow field symmetries that result from concentric waves of these shapes.

We visualize these flow fields by adding sparse particulate matter to the fluid surface.

2.2.2 Piston Radius

We isolate the three piston face shapes and compare the resultant wave morphologies for pistons of a single

shape with four different radii. We establish a connection between the two types of variation in piston

geometry (shape and radius) through piston cross-sectional area.

2.2.3 Fluid Viscosity

We repeat the above studies on the effects of piston geometry with a layer of extra-fine (estimated 250-

350 micron polydisperse) glitter covering the entire water’s surface when unperturbed. In comparing the

tests with glitter to those without, we study how a change in effective fluid viscosity affects resultant wave

morphologies.

2.2.4 Excited Wave Frequency

Though the simplicity of the apparatus made quantitative measurements impractical, the high-speed videos

enable a brute force method of counting frames to determine the frequency of excited waves. We employ

this method to analyze videos of the most complex wave morphologies exhibited throughout the above

three studies and compare the fixed driving frequency of the piston to both the frequency of the simple

concentric waves excited before steady state and the frequency of the complex steady state waves. We verify

the consistency of wave frequency by averaging over 5 periods at multiple container locations and video

timestamps. We compare the observed frequencies to the established theory of Faraday waves.

2.2.5 Container Vibrational Damping

In response to an observation that the rim of the plastic container shakes significantly for some above

experiments, we replace the plastic container with a metal mixing bowl filled with water to the same 50 mm
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FIG. 2: Archetypal examples of the four observed wave morphologies: (A) concentric waves, (B) interference
pattern, (C) mixed state, and (D) bubbly waves.

height. To further restrict container resonance, we add three 1 kg masses to the rim of the bowl at equal

spacing. We compare the resultant wave morphologies for the weighted and unweighted metal bowls.

3 Results

In lieu of quantitative measurement, we start by establishing a qualitative taxonomy of observed wave

morphologies that we use to better understand the effects of the many parameter variations described above.

Throughout all performed experiments, the many emergent wave patterns broadly fell into four categories

(see Fig. 2) that we define in order of increasing complexity: (1) “Concentric waves” refer to waves that mimic

the shape of the piston at the waterline and expand outward without losing said shape. (2) “Interference

patterns” refer to patterns of traveling waves that cannot be described by the motion of one easily identified

waveform like a concentric wave and instead are owed to the superposition of more than one wave. (3) “Mixed

states” refer to wave states that demonstrate two or more behaviors coexisting in visually distinct domains.

In all trials with mixed states, we observed a central region of either concentric or interference waves with

a ring of either standing or traveling striped waves aligned orthogonally to the boundary of the container.

We derive the name “mixed state” from similar patterns that have been documented in studies of globally

oscillated Faraday waves [7, 8]. (4) “Bubbly waves” refer to waves that exhibit complex structures that

cannot be characterized in one dimension. These waves may be standing, traveling, or some superposition

of the two. The qualities of a mixed state may accompany bubbly waves, but the converse is not true. The

wave patterns often bear qualitative resemblance to globally forced Faraday waves, but without complete

proof that our observed waves are indeed related to Faraday waves, we air on the side of caution and name

our waves “bubbly” after an ostensible likeness to the memory of boiling water.
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FIG. 3: Wave morphology as a function of piston submersion depth and shape for driving frequencies (A)
30 Hz, (B) 40 Hz, (C) 80 Hz, (D) 120 Hz. All data were the result of high-speed video analysis. For lower
frequencies, the circle piston quickly reaches highly complex waves as depth increases, with the square and
triangle following shortly after. For higher frequencies, all shapes tend to concentric waves as depth increases.

3.1 Piston Shape

For experiments at lower frequencies within the 20 to 120 Hz range tested, we typically observed an increase

in wave complexity with increasing piston submersion depth (Fig. 3A, B). The circle piston often first

generated bubbly waves at low submersion depths and maintained wave complexity for increased depth,

while the square and triangle pistons tended to first generate bubbly waves at medium or large depths. As

the driving frequency was increased, however, all three shapes generated waves of decreased complexity at all

but the most extreme of tested depths (Fig. 3C, D). We reason that the driving amplitude of the speaker falls

off at higher frequencies due to limitations of the voice coil mechanism; the reduced-amplitude vibrations

force less water per unit time, resulting in less complex waves in the absence of potential boundary effects

at either extreme of submersion depth.

In using sparse particulate matter to visualize the different flow fields for different piston shapes, we

observed a 6-fold symmetry generated by the triangle piston and an 8-fold symmetry by the square piston.

In both cases, water was ejected from the flat sides of the piston, circulated in a petal-like trajectory, and

returned to the piston at the corner nearest to the ejection position. We explain the attraction to corners

as a result of the sharp change in the curvature of the fluid meniscus. In their experiments on amphiphilic

interactions due to the Cheerios effect, Cavallaro et al. show both experimentally and through numerical

evaluation of the linearized Young-Laplace equation that buoyant particles experience an intense attraction

to regions of a concave meniscus with high curvature, notably the corners of a square post [15]. We suspect

the buoyant particulate matter in our system experiences the same attraction to the corners of the triangle
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FIG. 4: Wave morphology as a function of piston submersion depth and radius for driving frequencies (A)
30 Hz, (B) 40 Hz, (C) 80 Hz, (D) 120 Hz. All data were the result of webcam video analysis. Though the
effects of submersion depth on wave morphology were not precisely reproduced in experiments with circle and
triangle pistons of different sizes (not pictured), the decrease in wave complexity for higher driving frequencies
and smaller piston sizes was recapitulated. Any other inconsistencies can be attributed to differences in both
the experimental apparatus and environment due to the coronavirus pandemic.

and square pistons. In contrast, the circle piston did not generate a recognizable symmetry; it instead

displayed a few large petals spanning the container boundary with smaller sub-petals and vortices closer to

the piston. Without high-curvature corners to drive the flow field generation, the circle piston yields a flow

with less easily identifiable order.

3.2 Piston Radius

In experiments at all tested frequencies, we observed that pistons with smaller radii were much more likely

to generate simple wave structures, with all 5 mm pistons generating only concentric waves for all tested

submersion depths. For pistons with larger radii, we observed similar effects to trials with different shapes:

lower frequency experiments often saw waves increase in complexity with submersion depth (Fig. 4A, B)

while higher frequency experiments often saw waves decrease in complexity with depth (Fig. 4C, D). For

a wide variety of depths and frequencies, an increase in piston radius corresponds to an increase in wave

complexity.
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FIG. 5: Wave morphology as a function of piston submersion depth and (A, B) shape or (C, D) radius for
trials (B, D) with and (A, C) without a layer of glitter atop the water’s surface. All data were the result of
high-speed video analysis. The glitter effectively increases the fluid viscosity and resists generation of highly
complex waves.

3.3 Fluid Viscosity

Though the decision to add a layer of glitter to the fluid surface originally came about as a wave visual-

ization tool, we observed that experiments with otherwise identical parameter choices often demonstrated

different wave morphologies upon the addition of glitter. We include a small selection in Fig. 5 of results

directly comparing observed differences between setups with and without glitter when studying the differ-

ences between piston shapes (Fig. 5A, B) and radii (Fig. 5C, D). The addition of glitter often increased

the necessary submersion depth for a fixed frequency piston to generate bubbly waves. When perturbed by

waves, the glitter particles tended to stay clumped together and resist the forces trying to deform the surface

into complex waves, implying that the addition of glitter can be treated as an effective increase in the fluid

viscosity.

3.4 Excited Wave Frequency

High-speed analysis of trials demonstrating either a mixed state or bubbly waves with or without glitter

reveals that the system always initiates with concentric waves and evolves to a complex steady state in

roughly one second. We show the excited wave frequencies well before and during steady state in Fig. 6. In

the early stages of forcing before the concentric waves start to evolve, we find that the waves consistently

have frequency within 8.7% of the driving frequency for trials without glitter and within 10.% for trials

with glitter, though both drop to within 2.3% when statistical error is accounted. Once a steady state is

reached, we find that the waves have frequency within 8.5% of half the driving frequency for trials without

glitter and within 4.2% of half the driving frequency for trials with glitter; again, both drop to within 1.0%

and 0.0% respectively when statistical error is accounted. We verified the matching of the wave frequency
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to the driving frequency for concentric waves that did not evolve in time. Additionally, we found that the

concentric waves in the central region of the container during the generation of some mixed states oscillated

with frequency very close to the driving frequency, while the striped waves at the container boundary during

the generation of all mixed states oscillated with frequency very close to half the driving frequency.

3.5 Container Vibrational Damping

FIG. 6: Frequencies of locally excited surface waves well
before and during steady state driven at (A) 30 Hz and
(B) 40 Hz. All data were the result of high-speed video
analysis. Only trials that demonstrated bubbly waves
or mixed states were included; any combination of pis-
ton shape and depth that appears to be missing corre-
sponds to a trial that did not demonstrate bubbly waves
or mixed states. Data were averaged over 5 periods
taken at multiple locations and times to verify consis-
tency. Analysis of equivalent experiments with glitter
capture the same results.

In experiments with the unweighted metal bowl,

we found the waves generated to be similarly com-

plex to the equivalent parameter choices with the

plastic container. Upon the addition of the masses

to damp the bowl vibration, the bubbly waves

were often replaced with either interference pat-

terns or concentric waves. The effect was most no-

ticeable when the masses were added or removed

mid-experiment, typically causing a sudden shift

between complex wave morphology and concentric

waves.

4 Discussion and FutureWork

4.1 On Piston Geometry

When considering the similarities between resul-

tant wave morphologies for tests on the effects of

piston shape and radii, it bears stating that fixing

the four radii of each piston shape to be equal re-

sulted in a difference in piston cross-sectional area

for the three shapes. For a fixed radius, the in-

scribed square and equilateral triangle have areas

approximately 64% and 41% that of the circle re-

spectively. We check the claim that cross-sectional

area is a geometric parameter to unify results from

shape and radius experiments by comparing the

wave morphologies due to the two pistons closest in area – the 20 mm triangle and 15 mm square pistons

(difference of roughly 70 mm2). Indeed, we find that the resultant wave morphologies match for 17 out of the

20 combinations of frequency and depth tested (combinations shown in Figs. 3 and 4), further experimental

evidence of area as a valuable parameter.

Though pistons of larger cross-sectional area will indeed displace more water with each period of oscil-

lation leading to greater wave complexity, it would be foolish to overlook the tangible effects of different

boundary conditions, which are most apparent when viewing near-piston concentric wave fronts and flow
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field symmetries. We suggest two future experiments to further inspect the importance of these geometric

piston parameters. First, revisiting the studies of piston shape and radii with pistons normalized by cross-

sectional area rather than radius will serve to test the significance of piston area more thoroughly. Second,

an experiment in which waves are globally excited while a piston of variable shape is held steady at various

submersion depths will illuminate the effect that localized boundaries have on surface waves.

4.2 On Fluid Viscosity

For a particularly enlightening theoretical assessment of the effect of fluid viscosity on globally oscillated

Faraday waves, we turn to Chen & Viñals’s detailed derivations [10]. They show that high viscosity fluids

prefer to form striped wave patterns while low viscosity fluids prefer more complex square and hexagonal

patterns depending on the driving frequency. The results of experiments by Kudrolli & Gollub [7] compare

favorably to Chen & Viñals’s theory in their Fig. 1 [10]. Our observations for locally forced surface waves

with a layer of glitter capture the same essence of decreasing wave complexity with increasing effective fluid

viscosity as demonstrated in existing theory and experiment. Furthermore, the established shift to striped

waves at higher viscosities matches nicely with the greater prevalence of mixed states in our experiments

with glitter compared to those without glitter. Though we cannot be certain that our locally driven system

displayed Faraday waves, the parallel effects of increased viscosity in both locally and globally excited systems

suggests a possible connection be explored. To further validate the analogous fluid viscosity effect, we suggest

revisiting our studies on the differences between the presence and absence of glitter with a set of homogeneous

fluids of varying viscosities used in past Faraday wave studies such as silicone oil [5, 7], paraffin oil [6], and

milk [4].

4.3 On Excited Wave Frequency

As described in the Introduction, a major distinguishing characteristic of Faraday waves is that the surface

waves necessarily oscillate at half the driving frequency [4–11]. In showing that our concentric surface

waves oscillate within 2.3% of the driving frequency and that both our bubbly waves and waves in the

striped boundary region of our mixed states oscillate within 2.3% of half the driving frequency, we establish

a strong connection between our system of locally driven surface waves and the globally driven Faraday

waves. Additionally, the verification that our mixed states contain waves with frequency half of driving,

the observation that the striped wave characteristics of our mixed states appear in some bubbly wave trials,

and the above discussion on the prevalence of our mixed states in a higher viscosity fluid suggest that our

mixed states are actually the simplest instance of bubbly waves. In addition to the examples given in the

viscosity discussion, a qualitative resemblance exists between our mixed state waves and certain Faraday

wave patterns created in laboratory experiments by Sheldrake & Sheldrake, most notably in Fig. 18b [8].

To probe the connection to Faraday waves further, we suggest employing more sophisticated data processing

methods on videos with a wider range of driving frequencies to obtain a more rigorous and consistent analysis

of the wave frequencies excited by local forcing.
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4.4 On Container Vibrational Damping

Though we have heretofore discussed evidence to suggest a connection between our locally driven surface

waves and traditional globally driven Faraday waves, we must also give space to results that suggest the

contrary. When viewing high-speed videos of our experiments, it becomes apparent that while the base of

the container is fixed, the rim is free to deform and shake in response to the pumping of the contained fluid,

even in trials with the more rigid metal bowl. In trials with high wave complexity, the rim of either the

plastic or metal container can be seen undergoing especially vigorous vibrations. However, when the allowed

vibrations are damped by weighting the rim of the bowl, we observed a stark decrease in wave complexity.

These results suggest the possibility that any semblance of Faraday waves in our experiments was not due to

the local forcing of the piston, but instead due to a global parametric pumping from the resonant behavior

of the container.

The conditions of the container have additional unintended and undesired effects in generating what

Douady and Bechhoefer call meniscus waves [5, 6]. When the meniscus length at a boundary changes in

response to a change in fluid height, a surface wave with frequency matching that of driving is emitted from

the boundary to preserve fluid mass [5]. We observe these waves in our system most clearly at the very start

of high-speed videos of trials with bubbly waves. In many cases, concentric waves can be seen emanating

from the boundary before any concentric waves have traveled from the piston to the boundary; these waves

may be attributed to either Douady’s meniscus waves or the shaking of the container. Container vibrations

and meniscus waves both create undesirable waves that muddy the results of our local forcing studies. We

suggest improving the apparatus with more rigorous container vibrational damping; we also relay suggestions

from papers by Douady and Bechhoefer to use brimful fluid conditions in a container made of or treated

with a non-wetting material [5, 6].

5 Conclusion

In summary, we presented a detailed experimental investigation of the complexity of wave morphologies

generated by local oscillatory forcing. We showed an increase in wave complexity with increased source

submersion depth for low frequencies and a decrease in complexity for high frequencies. We reported an

increase in wave complexity for pistons of larger cross-sectional area due to a change in face shape or radius.

We discovered that increased fluid viscosity causes decreased wave complexity and paralleled this effect to

those observed in prior Faraday wave studies. We showed that our simplest excited waves have frequency

closely matching the driving frequency and that our most complex excited waves have frequency closely

matching half the driving frequency, establishing a solid connection between the waves we observed and

Faraday waves. Finally, we revealed the unintended presence of meniscus waves and the decrease in wave

complexity when the fluid vessel is damped to vibrations. Though somewhat inconclusive due to shortcomings

of our apparatus, our results hint at a rich phenomenology of locally excited surface waves with tangible

connections to Faraday waves primed for further study.
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