Jumping Robot

Julien Stalla-Bourdillon, Stephan Froehlich, Reuven Ballaban
My Contributions

- Background Research
- Data acquisition & minor rig modifications
- Analysis
The Team
The Rig

- The Jumping Robot rig consists of a relatively heavy actuator attached to a pole.
- Spring attached to the bottom of the actuator allows robot to bounce.
- Floor, aluminum plate, power and control cables serve as damping.
The Rig (pt.2)

- Motion tracking camera at 100fps captured the motion of the robot and output location.
Background

- Raibert’s Hopper
Background (pt. 2)

 - 1-cycle stable, “limping” gait (2-cycle)

- Stable 3-cycle (no motion graph in article), chaos
Analysis of a Simplified Hopping Robot (Daniel E. Koditschek, Martin Bühler)
Procedure

- Our original goal was to produce an orbital map.
- Accomplished this by using a set frequency and sweeping through different oscillation amplitudes.
- Results are noisy, but interesting.
Difficulties

- Camera sometimes lost lock on tracking point momentarily, causing (presumably) negligible noise.
- Rig put out enough force to gouge floor, solved by placing aluminum plate under spring
- Rig occasionally orbited pole, resulting in lost tracking.
- Original LabView program written to control robot did not work; had to use more basic tools resulting in more coarse frequency resolution.
Jumping Robot part 2: Results and Data

By: Stefan Froehlich
My contributions

• Helped out with data taking
• Helped out with analysis of data
Example trajectories

2-Cycle at 6Hz with amplitude 1125

1-Cycle at 4Hz with amplitude 1250
Example trajectories

3-Cycle at 6Hz with amplitude 825

Chaos at 7Hz with amplitude 1200
Orbit Diagrams

6 Hz
6 Hz

- As the amplitude increases there are:
 - 2-cycles initially
 - 1-cycles
 - 3-cycles with larger amplitude
 - 1-cycle in this region at 1025
 - 2-cycles
 - What appear to be chaotic trajectories with larger amplitudes interspersed
 - Chaos
 - Starts at 1212
7 Hz

- 3-cycle initially
- 2-cycles
 - From 850 to 900
- Chaos
 - Starting at 950
- Notice the transition from 3-cycles to 2-cycles at 825
Transition

3-cycle at 800

Transition at 825

2-cycle at 850
Transition

- Starts out with the 3-cycle
- Transitions into a state whose short term appears to be a 2-cycle, but has a different long term behavior
- These types of states, with short term behavior different from long term, occur frequently where the cycle length bifurcates
8 Hz

- 1-cycles and 2-cycles initially
- Quickly diverges into chaos starting at 775
- Not as much of a cascade before it reaches chaos
Chaos

Took data for 8Hz at 775 three times

Trial 1
Follows 3-cycle for a long time before finally becoming chaotic

Trial 2
Begins chaotic and has large regions of small amplitude.

Trial 3
Begins chaotic and again has regions of small amplitude

These regions of small amplitude chaotic motion were common for 8 Hz
5 Hz

- Large region of 1-cycles
- 3-cycles and chaos in transition region
- Followed by 2 cycles
- Interesting bi-stability occurs in transition region
Bi-stability

Took data for 5Hz at 1212 in the transition region three times

There are stable 1- and 3-cycles at these conditions

Trial 1
Transitions to 1-cycle quickly

Trial 2
Stays at stable 3-cycle

Trial 3
Stays at 3-cycle for long time before transition to 1-cycle
Bi-stability
4 Hz

- There only 1-cycles
- The 1-cycles are stable
- We were unable to find anything else
Stable 1-cycle

Video was taken for frequency of 4 Hz and amplitude of 1700
Chaotic regions

- At 8 Hz the system quickly progresses into chaos with very minimal cascade
- For 6 and 7 Hz there was a cascade into chaos
- For 5 Hz there was the transition to 2-cycles but there was no chaotic region in the range tested
- For 4 Hz we only saw 1-cycles
- As frequency decreases, the chaotic region for the system disappears
Jumping Robot part 3: Analysis and Conclusion

Julien Stalla-Bourdillon
My Contributions

- Data Acquisition
- Data Analysis
- Research
Data Analysis

- Observation of a ‘period-3’, so thanks to Sarkovskii’s relation order and the famous article ‘period-3 implies chaos’, we know that our system will exhibit some chaotic behavior.

Example with $f=5$Hz, amplitude=1200counts:
Data Analysis

- High sensibility to initial conditions, for a fixed set (frequency, amplitude, initial position and speed), we observe two really different trajectories.

Example with f=7Hz, amplitude=1200 counts:
Data Analysis

- How to determine if our series is chaotic or not? Different possibilities:

 - Graphic analysis

 - Power Spectrum Density and the Autocorellation of the signal
 (comparison with white noise)

 - Use of the Bifurcation Diagram

 - Use the ‘0-1 test for chaos’*

 - Determine the Largest Lyapunov Exponent
 Recall: the sum of the Lyapunov exponents must be negative and at least one of them is positive

* See ‘On the Implementation of the 0–1 Test for Chaos' from Georg A. Gottwald & Ian Melbourne
Data Analysis

- Graphic Analysis is not sufficient
- PSD and Autocorellation of our data exhibits only ‘weak chaos’:

PSD and Autocorellation of a white noise:
Data Analysis

- For our data, the time-series which look like white noise we have this type of PSD and autocorrelation:

For $f=7\text{Hz}$, $A=1100$:

For $f=8\text{Hz}$, $A=8500$:
Data Analysis

- The ‘0-1 test for chaos’ has been tested on a lot of well-known systems but is not perfect* but gives a good idea of the range we need to work on.
 - Example with the logistic map:

* Cf ‘Reliability of the 0-1 test for chaos’ from Hu, Tung, Gao and Cao and the answer ‘Comment on “Reliability of the 0-1 test for chaos”’ from Gottwald and Melborune.
Data Analysis

- On our data, with $f=5,6,7\text{Hz}$ and A from 850 to 1200, we get:

- Best results for $f=7\text{Hz}$ and amplitude around 1100 counts and for $f=8\text{Hz}$ between 800 and 875 counts.
Data Analysis

- Lyapunov exponents are difficult to extract from a time-series, several methods exist. The method we used comes from the article ‘A practical method for calculating largest Lyapunov exponents from small data sets’ from Rosenstein, Collins and de Luca.

- On the time-series with f=8Hz and A=800, the estimation of the Largest Lyapunov Exponent was 0.1904 for m=3 and 0.2102 for m=2 with $\tau=10\text{ms}$.

>> we already knew that this system is chaotic, this gives us more proof. What could be interesting is to evaluate the whole set of Lyapunov exponents and then apply the conjectures which link Lyapunov exponents and the dimension of the strange attractor. (Mori or Kaplan and Yorke)
Data Analysis

- To rebuild the phase-space, we need an estimation of 2 variables: tau and m.

Several methods have been submitted so far, the time delay (tau) such as the minimum of the mutual information\(^1\) or the first minimum of the autocorrelation\(^2\).

For the embedding dimension (m, with the relation \(m \geq 2D+1\) and \(D\) the dimension of the attractor), one common method is to use the nearest neighbor algorithm (but it can be biased). We evaluate \(C(r)\):

\[
C(r) = \lim_{m \to \infty} \frac{1}{m^2} \sum_{i,j=1}^{m} H(r - |x_i - x_j|)
\]

\(C(r) \propto r^\nu\)

And with \(\sum\), we get the correlation dimension (when \(m\) is too big, we observe a saturation)

1- ‘Independent coordinates for strange attractors from mutual information’ from Fraser and Swinney
2- ’Proper choice of the time delay for the analysis of chaotic time series’
Data Analysis

- Other methods suggest evaluation of m and tau in the same time

(see ‘A Differential Entropy Based Method for Determining the Optimal Embedding Parameters of a Signal’ from Gautama, Mandic and Van Hulle)

When we apply these two methods on our most chaotic time series (f=8Hz, A=800 counts) we find:

$$(\tau, m) = (15\text{ms}, 3)_1 \text{ and } (10\text{ms}, 2)_2$$
Conclusion

- This jumping robot exhibits chaotic behavior (period-3). We observe several specific aspects such as bistability and a return to stability (for frequency of 5Hz and 6 Hz, as we go up in amplitude).

- The system suffers from a lot of uncertainty and noise but we managed to piece together a nice bifurcation diagram. Some improvement could be made here (and try to use not only integer frequencies).

- Our time-series look like ‘weak chaos’ and a study for $f \geq 8$Hz and bigger amplitude could be interesting. Moreover, our algorithms present some defaults and an improvement could be made to get a better analysis of the attractor.

- In one article, scientists were able to ‘destroy’ the strange attractor and then control chaos by changing a parameter.
Thank you for your attention!