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Coupled oscillators that synchronize through interaction have proved to be a useful for

modeling a number of systems particularly in biology. All these systems share similar

equations matching dynamics to a system of mechanical metronomes supported on

a movable platform. In our project we consider this mechanical system due to its

accessibility and freedom from stochastic noise present in many biological systems.

Our work looks at how the length of time of the transient behavior depends on the

number of oscillators, N . We considered systems of two to nine metronomes. We

developed our own analysis methods, which reveal an upward trend in the amount

of time to synchronization as we increase the number of metronomes. We extended

an existing model for a system of two metronomes for the general case and ran

simulations. Our analysis methods are comparable and further improvements are

highlighted for future work.

I. INTRODUCTION &

BACKGROUND

Christiaan Huygens first observed phase-

locking in a system of pendulums in 1665. His

serendipitous observation occurred while he

was laying sick in bed for hours in front of a

pair of pendulum clocks. He noted that these

clocks synchronized in antiphase, which led

him to conduct a series of experiments where

he determined the stability of the system to

return to antiphase motion despite perturba-

tion.

This phenomenon was largely ignored up

until recently. Bennett et al validated Huy-

gen’s results in 2002? . Further studies con-

sidered a system of two metronomes and

looked at the roll of damping in the system? .

Part of the reason for this resurgence is the

existence of synchronous behavior in bio-

logical systems. Mirollo and Strogatz em-

phasized this prevalence by relating syn-

chronous dynamics to firefly flashing, pace-

maker cell firing, and populations of men-

struating women? . Recently synthetic biol-

ogists explored intercellular quorum sensing

in systems outfitted with genetic oscillators

that could one day ”function as spatially dis-
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FIG. 1: Set-up. N = 8 case shown here.

tributed sensors or synthetic machinery for

coupling complex dynamical processes across

a multicellular population”? . Clearly there

is a vast utility that extends beyond physics

for understanding these systems.

Most work has revolved around model-

ing and understanding steady state behav-

ior. We are interested in time-length of the

transients or how long it takes for the system

to synchronize, tsync, if it does. We believe

as biological models are utilized for synthetic

purposes an understanding of the overall dy-

namics is necessary for optimization in the

engineering. With this in mind we look at

systems of metronomes to probe this ques-

tion. Unlike biological systems, this mechan-

ical system involves less noise and is experi-

mentally viable within the given time-frame

of a week. Nevertheless due to mathematical

similarities of the dynamical equations, this

work provides a necessary stepping stone be-

fore considering similar questions in less con-

trollable contexts.

II. METHODS

A. Experimental Materials and

Methods

The experimental set-up for this project

is conveniently very simple, but care must be

given to reduce external influences that can

easily alter the dynamics of non-linear sys-

tems.

Our system consists of between two to

nine metronomes, a flat, thick poster-board

platform, and two rollers (empty 12 fl. oz

diet coke cans). The basic set-up is shown

in figure 1, with the metronomes always be-

ing placed along a 1-dimensional array. The

metronomes are Wittners Super-Mini-Taktell

(Series 880). We tested each metronomes ca-

pability of synchronizing in N=2 case. This

resulted in us removing a metronome due to

anomalous behavior. We tracked the data

using a camera set for 42 frame per second

that was connected to LabView on a PC. For

data collection, we blacked out the pendu-

lum surface and the reflective casing near the

pendulum bob. This aided LabView in track-

ing a single white dot applied with white-out

on each metronome bob. Similarly we spray-

painted the poster-board platform black and

applied a white dot on its side to track the

motion. Finally we placed the entire system

on a thin, smooth plastic block used to re-
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duce frictional irregularities liable from the

table surface.

During our week in the lab we ran 20 us-

able data-runs for N = 2, 3, 5, 6, 7, 9, 19 data-

runs for N = 4, and 12 runs for N = 8.

The metronomes were set for 200 beats per

minute, which corresponds to 100 periods per

minute. For each run we set up LabView

to track the platform and the metronome

bobs. Once the camera was tracking we sta-

bilized the platform by hand as we set the

metronomes one-by-one in motion. As the

last metronome was set in motion we let go

of the platform. We considered this the be-

ginning of the run. The system was allowed

to evolve for 90 seconds or longer depend-

ing on whether synchronization seemed to oc-

cur. For some of the higher N cases synchro-

nization did not occur despite allowing the

metronomes to wind completely down.

B. Experimental Analysis

Our goal was to determine the dependence

of time to synchronization on the number

of metronomes. We used the raw data

output of times and x-positions (from the

camera lens point of view in pixel units). We

considered a strict definition of synchrony

where metronomes are in-phase.

Due to camera distortions and small

tracking errors, we chose to consider the

turning points of the data as opposed to the

entire time series. By using the findpeaks

function in Matlab our time-series data was

reduced to a vector of peak times for each

metronome. We chose to look at peaks

occurring at only one turning point ensuring

our analysis would not falsely detect anti-

phase phase-locking as an occurrence of our

stricter synchronization.

We developed an algorithm for determin-

ing synchrony for use with the experimental

data and the simulation data. The peak

times will occur at the same time for systems

in inphase synchrony. However for the real

data, this is not expected even when synchro-

nization has phenomenologically occurred

because of slight noise in the system, errors

in tracking, and discretization of time. As

a result we cannot discount synchronization

from being achieved even if peaks occur at

slightly different times for the metronomes.

This motivates a time-ε definition of synchro-

nization. We introduce the model parameter

εtime where if all metronome peaks occur

within it we consider that time an instant of

synchrony. Full synchronization occurs when

so many instances of synchrony occur in a

row (defined by another model parameter,

r).

After trimming the data of all time before

the platform is destabilized and determining

the peaks, the output data is reduced to a

3



vector of peak times for each metronome.

The size of each vector is not necessarily the

same, however any instance of synchrony

must contain any elements from each vector

so we look for instances of synchrony by

arbitrarily choosing one vector and consider-

ing its time elements in succession, varb. In

order to reduce the arbitrariness we used an

algorithm that updated the reference time

for placing the εtime ball. Initially we look

around the arbitrary metronome peak time.

Any peak times from other metronomes

within the εtime are placed in a set with

the original reference peak time and the

average time becomes the new reference for

the εtime. This procedure is continued until

no further peak times are picked up. At this

point, if the number of elements is equal

to N we consider it a syncing instance and

place the reference time in a set, S, and

we move to the next peak time in varb. If

an instance of syncing does not occur S

becomes the empty set and we move to the

next peak time in varb. When the cardinality

of S = r we take the min(S) as the time

of synchronization, tsync for the run. We

acknowledge this method still contains an

element of arbitrariness that can lead to

errors. A minimal error method realized

after our data analysis and presentation as a

group is outlined in the conclusions.

C. Theory and Simulation

Part of modeling the system correctly re-

quires an understanding of how mechanical

metronomes operate. Key to their time-

keeping is an escapement mechanism. As

one winds up the metronome before use the

spring inside is supplied with potential en-

ergy that is gradually used up by providing a

kick (via a system of parts) to the rod of the

pendulum. This recovers of the energy dis-

sipated during every oscillation. As long as

the metronome is wound it can maintain the

same frequency. This physically manifests

itself with the escapement catching the rod

causing a slow down as it approaches the ver-

tical and then an increase in speed through a

kick as the rod passes the vertical. Aware of

this we can accurately implement the equa-

tions of motion.

We generalize the equations of motion

that have been laid out for the N = 2 case? .

For a system ofN metronomes sharing a plat-

form we have the equations of motion for the

jth metronome rod and the platform center

of mass:

φ̈j + bφ̇j +
g

`
sin(φj) = −1

`
Ẍcos(φj) + Fj

(M +Nm)Ẍ +BẊ =

−m`(sin(φ1) + sin(φ2) + . . .+ sin(φN))̈

where the last double dot is for the entire

right hand side in the second equation. φj
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refers to the angular displacement of the jth

metronome rod, X is the platform center

of mass linear displacement, b is the vis-

cous damping term, g is acceleration due

to terrestrial gravity, ` is the effective rod

length of the metronome, F is the impul-

sive drive, M is the platform mass, m is the

mass of the metronome rod and weight, B is

the platform friction coefficient and dots de-

note derivatives with respect to time t. We

can non-dimensionalize by introducing scaled

variables Y = X/` and τ = t
√
g/`. Thus we

can write:

φ
′′

j + 2γ̃φ
′

j + sin(φj) = −Y ′′
cos(φj) + F̃j

Y
′′

+ 2ΓY
′
=

−µ(sin(φ1) + sin(φ2) + . . .+ sin(φN))
′′
,

where prime refers to differentiation with re-

spect to τ and we have defined

µ =
m

M +Nm
,

γ̃ = b

√
`

4g
,

Γ =
B

M +Nm

√
`

4g
.

For the escapement mechanism we incor-

porated a transformation for whenever a φj =

0. For the angular velocity |φ′
j| → γ|φ′

j| + c

where γ < 1 is the factor reduction in the

speed as the escapement catches and c is a

fixed impulse kick in the direction of motion.

For our model the kick affects the amplitude

but not the phase.

We simulated our model in Matlab using

ode45 with event recognition to incorporate

the escapement mechanism physics and ran-

dom initial conditions. Ode45 numerically in-

tegrates systems of equations using a Runge

Kutta (4,5) method. We ran 100 runs For

each N case. We determined the time to

synchrony using the same method outlined

for the experimental data for comparison.

We also used a ”strict sync test” where we

defined a synchronous event to occur if all

metronome peaks occurred within two time

elements. The rationale behind this was that

there is less noise with the data so that a

synchronous event occurs if all peaks occur

in a column along the time axis. Machine

precision will alter this column slightly and

discretization of time will cause all points to

reside in either one of two possible time lo-

cations. Simply put, we know a synchronous

event does not occur if the element distance

between any two peaks is two or more. For

one or no peak element differences, we can

not conclusively say whether a synchronous

event occurs or not. So we assume that a

synchronous event does occur and rely on the

value of r to correct for synchronous event

identification errors. This strict test should

give a more accurate tsync available only to

noiseless simulation results and provides an
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FIG. 2

FIG. 3: Best estimate parameters:

M = 0.0655 +N(.094−m)kg,m =

.022kg, b = 0.0022, B = 0.001, γ = 0.97, c =

.025, ` = 0.025m

Matched freq: Same as above but ` = 0.1m

upperbound on any experimental results.

III. RESULTS

As outlined, we determined tsync for each

data run. For the simulation we considered

two different parameter sets. One we mea-

sured what parameter values we could and

gave a best guess for other parameters. We

noticed that the final frequency for this sim-

ulation did not match experimental results.

For our second parameter set we matched

the frequency by taking the old parameter

set and scaling the lengths of the metronome

rods, `. Our values are captioned in figure 3.

Figure 2 shows the percentage of runs for

each N that synchronize in the experiment.

We observed synchronization for all the runs

for N ≤ 5 and a decrease in occurrence of

synchronization as we increase N . Figure 3

shows the same graph but for the simulation.

Figures 4 and 5 show the average tsync for

each N with error bars of the standard de-

viation for the set of synchronized runs for

each N . Both figures show the results data

but figure 4 is using our ”best guess” param-

eter values and figure 5 is after rescaling `

to match the frequency. We note there is a

slight upward trend and larger uncertainties

as we deal with smaller sets of runs for high

values of N . Our simulations match exper-

imental results especially when we corrected

for the frequency.
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FIG. 4: Means of runs that synchronized in

each data set with standard deviation error

bars.
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IV. DISCUSSION

Our results show that when using the

same method of analysis on both experiment

and simulation we have agreement between

basic statistical measures. This suggests our

two schema are comparable. At higher N

values there is less agreement. A method-

ological source for differences is that we have

very few data samples for the high N values.

For example, for N = 9 only six runs resulted

in synchronized behavior. A simple solution

would be take more data. Another source of

error is the fact that as we introduce more

components in a system each component in-

troduces its own internal source of error both

mechanistically and theoretically–clearly the

model does not account for all slight con-

tributions to the dynamics and parameters

related to each metronome do not perfectly

match reality. Together this suggests that

simulation and experiment should diverge as

we increase the value of N .

There are a number of sources for method-

ological error that could have been better

minimized. After our presentation Profes-

sor Schatz suggested that instead of just

looking at given peaks we could more accu-

rately determine peak times by determining

a weighted average of all the data points in

each half-period. The theoretical challenge

in this is how exactly to weight and what

range around the given peaks should be con-

sidered. If implemented correctly this should

give more accurate peak times. After analysis

we realized a time-ε method that completely

eliminates the arbitrariness of the utilized al-

gorithm. Here we would still use a refer-
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ence metronome to determine plausible times

for instances of synchrony. Now we would

look around the reference point by twice ε

and put all metronome peak times that exist

within this time neighborhood into a set, S.

If the number of elements S is equal to N

and max(S)−min(S) ≤ ε.

The greatest source of error however is

that while we’re interested in perfect synchro-

nization the time-ε method incorrectly iden-

tifies phase locking with very small phase dif-

ferences as perfect synchrony. Hindsight sug-

gests that instead of dealing with a time-ε

for peak times a more complete analysis is

to deal with a total-phase-difference-change-

ε. The method is similar but requires that

we have a means of obtaining angular dis-

placement accurately. Given the difficulty

and inaccuracy of measuring metronome rod

length it is not clear we can obtain it from

the raw data we have. For illustrative pur-

poses during our presentation we used the

Hilbert Transform to deduce the angular dis-

placement from our data, however this trans-

form introduces errors and would not be

useful with methods that look so locally at

the data. The simplest solution is to track

an extra dot on each metronome placed at

the metronome rod pivot point and use sim-

ple trigonometry to obtain the phase values.

Then we would look at the time-series of the

sum of pairwise absolute value of differences

in angular displacement. We would look at

the difference between adjacent time points

(akin to the time derivative) and when this

value is less than some ε for some total time

amount (analogous to r) we would consider

the system to be phase locked. The final

phase locked value of total-absolute-phase-

difference is then a measure of how anti-phase

the system ended up. This final metric would

require some further thought to correctly ac-

count for counting differences between each

N case.

V. CONCLUSION

Our work is still useful despite the men-

tioned downfalls of our methods. The pro-

posed updated methods are refinements and

the results we obtained should still be qual-

itatively accurate. Indeed our experimental

results match intuition of an increasing time

to synchrony with N and a decreasing per-

centage of synced cases with N . Our simu-

lation results match experiment, which sug-

gests that the model is a reasonable compar-

ison. Some differences occur between experi-

ment and simulation. First of the simulation

always synced up for all N cases except for

the N = 2 case, which always synced up in

experiment. We believe the source of this dis-

crepancy is the choice of parameter values.

As N is a parameter in the model, we be-

8



lieve at low values of N our system is on the

cusp between in-phase and anti-phase stable

steady states. We postulate that if we in-

crease simulation time phase-locking may be

observed or that both steady states are pos-

sible depending on initial conditions. This is

counter to what we observed so a more accu-

rate parameter set likely exists.

Overall our analysis shows that synchro-

nization times have a very slight upward

trend as N increases whereas likelihood of

synchronization at a certain point vastly

drops off as N increases. When synchroniza-

tion did not occur there was still an heuris-

tically observed locking of the system with

multiple frequencies. Future work could an-

alyze how phase-locking occurs within sub-

sets of the metronomes. Additionally future

work should heed to our suggested more pre-

cise methods.

REFERENCES

M. Bennett, M. Schatz, H. Rockwood, and

K. Wiesenfeld, “Huygens’s clocks,” Pro-

ceeding of the Royal Society of London Se-

ries A-Mathematical Physical And Engi-

neering Sciences 458, 563–579 (2002).

J. Pantaleone, “Synchronization of

metronomes,” American Journal of

Physics 70, 992–1000 (2002).

R. Mirollo and S. Strogatz, “Synchroniza-

tion of Pulse-Coupled Biological Oscilla-

tors,” SIAM Journal on Applied Mathe-

matics 50, 1645–1662 (1990).

T. Danino, O. Mondragon-Palomino,

L. Tsimring, and J. Hasty, “A synchro-

nized quorum of genetic clocks,” NATURE

463, 326–330 (2010).

D. Borrero-Echeverry and K. Wiesenfeld,

“Huygens (and Others) Revisted,” Chaos ,

(In Press).

9


