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We investigate the behavior of a Duffing oscillator subjected to lateral periodic forc-

ing. We analyzed experimental results and compare them to results from our simu-

lations. We explain the impact of asymmetry in the oscillator wells and show how it

can impact the emergence of chaos in the system.

I. INTRODUCTION

In this study we explore the dynamics of

the Duffing oscillator? when subjected to pe-

riodic lateral force. Figure 1 illustrates the

concept of the system. It shows a buckling

beam undergoing lateral periodic force ap-

plied to one side. Two electromagnets at-

tract the beam to one of two stable positions.

This system can be modeled by the “Duff-

ing equation” which is a non-autonomous,

second-order ODE:

ẍ+ δẋ− αx+ βx3 = f cos(ωt) (1)

We chose to study this system as it pro-

vides us with a relatively simple model to

study the transitions between periodic behav-

ior and chaos. The small number of param-

eters allows us to isolate the effect of initial

conditions from small variations in the pa-

rameters. Existing literature on the subject

has reported sudden transitions between pe-

riodicity and chaos. The system is simple

enough that we can study its qualitative and

quantitative properties by using three popu-

lar approaches of scientific inquiry: (a) con-

structing a physical experiment to demon-

strate the behavior, (b) studying the model

analytically after some simplifications and (c)

using computer simulations to complement

the previous two approaches.

Our objective is to analyze the bifurca-

tions of the system in the (f, ω) plane for

fixed values of α, β and δ. We focus on differ-

ent ranges of f to determine the thresholds

of these bifurcations. Thus, we can use this
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system to demonstrate how a single parame-

ter in a simple model can result in the onset

of chaos.

The rest of this study is organized as fol-

lows. Section III discusses the model. Sec-

tion IV outlines the methods we employed

in this study. We provide our results in

section V followed by the conclusion in sec-

tion VI.

FIG. 1. Conceptual illustration of the system

II. RELATED WORK

III. MODEL

The system can be modeled by the follow-

ing equation:

ẍ+ δẋ− αx+ βx3 = f cos(ωt) (2)

In order to understand the equation we

first consider the simplest case where set δ =

0 and f = 0. The equation is reduced to:

ẍ− αx+ βx3 = 0 (3)

which is a Newtonian system with po-

tential V (x) = β
4
x4 − α

2
x2. The trajecto-

ries are curves of constant energy E(x, ẋ) =

1
2
ẋ2 + V (x). It is easy to see that we have a

saddle at the origin and center at
(√
±α
β
, 0
)

.

Other than the two homoclinic orbits from

the origin to itself and the two centers, we

have that all other trajectories are in fact

closed orbits.

Increasing the complexity of the simplified

model, we add the dissipation term i.e., we

set δ > 0. In this system, heuristically, tra-

jectories spiral into what are now stable

fixed points at
(√
±α
β
, 0
)

. In this case,

the energy decreases along the trajectories of

the system:

d
dt
E = ẋ(ẍ+ βx3 − αx) = −δẋ2 ≤ 0

It can be shown that, except for the stable

manifolds of the saddle, all trajectories of this

system tend towards one of the stable fixed

points.

In order to understand the impact of the

magnitude of the forcing term f we consider

three ranges for its magnitude when it is

greater than zero:

1. f close to zero: For small values of f

we find that we have stable limit cycles

near what were stable fixed points for

f = 0, and almost all trajectories even-

tually converge to one of the two limit

cycles (namely all except for the mea-
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sure zero stable manifolds of the saddle

point at the origin).

2. V ery large f : it can be shown there is

one globally stable limit cycle attract-

ing all trajectories.

3. Intermediate values of f : For this

range of values we have chaotic behav-

ior of trajectories in phase space. This

is essentially due to the fact that as

we increase f from zero we eventually

cause the stable and unstable mani-

folds of the saddle at (0, 0) to intersect,

and hence to intersect infinitely many

times. The presence of infinitely many

homoclinic intersection points in (a

compact region of) phase space causes

the trajectories to have very complex

topological structures. We are most in-

terested in analysis of this range of val-

ues.

IV. METHODS

A. Experimental Setup

We constructed a physical apparatus on

the same lines as shown in figure 1. A

schematic diagram of our apparatus is shown

in figure 2. We attached a slender metallic

beam to a rigid frame made from 80/20. The

beam was cut from shim stock of thickness

.007 inches. Two rare earth magnets were at-

tached symmetrically to the top of the frame.

The magnets in our experimental setup had

uneven strength. As a result, the metallic

beam always buckled in the direction of the

stronger magnet. However, either configura-

tion i.e., being buckled to the left or to the

right, constitutes a stable equilibrium. The

position of the beam in the center is an un-

stable equilibrium. A periodic lateral force

was applied to the entire framework through

a programmable motor.

We used strain gauges, attached near the

base of the beam, to measure the displace-

ment of the tip. The strain gauges were used

to create a voltage differential which was then

amplified and sent to the computer where it

was plotted as a function of time. We used a

of 10,000 Hz. We found an approximate lin-

ear correspondence between voltage and dis-

placement of the beam: 1.4V corresponds to

approximately .045 m. Thus, no scaling was

required to measure the actual displacement.

Limitations of the apparatus: Our ap-

paratus had the following limitations:

1. Bend in the shim stock : The metal-

lic shim stock that we used had a

natural bend in it which could not

be completely removed through pre-

processing. This bend caused the shim

stock to favor a particular equilibrium.
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FIG. 2. Schematic diagram of apparatus

2. Mechanical vibrations : Although, we

were able to reduce this problem

by mounting the apparatus on cin-

derblocks yet minor vibrations owing to

the movement of the motor still influ-

ence the beam.

3. Heat : Our motor heated up after pro-

long use so some runs were prematurely

terminated to avoid damage to the ap-

paratus.

4. Limited magnitude of forcing function:

We could not apply large force to the

framework due to the limited distance

the framework could move about its po-

sition.

B. Simulations

We also carried out computer simulations

to study the Duffing oscillator. We estimated

the values of α; β; and δ using our experi-

mental data. According to our data, we have

fixed points at approximately
√
±α
β
≈ ±0.7V

(the strain gauges would shift over time, but

this is the position once we normalize by sub-

tracting the mean from the data). Writing

x(t) = −
√

α
β

+ φ(t), substituting this into

the Duffing equation and ignoring the forc-

ing term, we find that to first order in φ

we have
¨

φ(t) = −δ ˙φ(t)− 2αφ(t). This gives

us damped simple harmonic motion with fre-

quency
√

2α(1− δ2/8α). Solving in terms of

δ gives us δ =
√

8α(1− ω2
1/2α). From our ex-

perimental data we get an approximate value

for ω1 (based on the period of oscillation in

the small amplitude case) and guess α such

that ω0 =
√

2α is only slightly larger than

ω1.

We set the parameters to the following val-

ues based on our data. From the dataset

where the stock oscillated with low amplitude

in the right well we find that ω1,left = 2.0Hz.

We found chaotic behavior with f = 6.272

and α = 2.01. For the left well we found that

ω1,right = 4.76Hz and α = 11.33.

For our simulations we averaged the two

values of ω1 and thus used ω1,avg = 3.38 and

α = 5.714.
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FIG. 3. Chaotic behavior for sinusoidal forcing:

Time series

FIG. 4. Chaotic behavior for sinusoidal forcing:

Phase Plot

FIG. 5. Chaotic behavior for sinusoidal forcing:

Poincare section

V. RESULTS

A. Experimental data

We present results from one of our runs

in which we observed chaotic behavior. The

plot in figure 3 shows a time series plot of

the voltage measurements collected during

the run. One magnetic well is located at

around -0.4V (on the y-axis) and the other

is at around -1.8V . One can see that the

motions of the tip are highly irregular and

indeed appear random. In order to clean

the noise in the signal, we passed this data

through a Butterworth filter. The processed

data was then numerically differentiated. We

plotted the smoothed signal versus its deriva-

tive to obtain the the trajectory in phase

space (xvs.ẋ) shown in figure 4. Finally, we

obtained the Poincare section for the same

data (figure 5) by plotting one point per os-

cillation of the motor. The motor was oscil-

lating at 4 Hz and we were sampling at 10,000

Hz so we plotted only the first of every 2,500

data points. The points were then colored

to indicate the sequence in which they were

plotted.

B. Estimation of the largest

Lyapunov Exponent

In order to reconstruct the attractors from

time series we use the data shown in figure 3.
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FIG. 6. Phase plot: Oscillations in right well

with small f

FIG. 7. Phase plot: Oscillations in left well with

small f

We then estimated the largest Lyapunov ex-

ponent. We find the largest Lyapunov expo-

nent to be .0196 - which is positive, as we

would expect for a system exhibiting chaotic

behavior.

C. Discussion

The phase plots of the simulations run

with the parameters estimated earlier are

shown in figures 6, 7, and 8. We notice

several discrepancies between simulated and

measured results. We find that only the simu-

FIG. 8. Oscillations in left and right wells with

small f

lation using the right well parameters showed

any significant chaotic behavior, and even in

that case the chaotic transient ended fairly

quickly in a limit cycle.

Additionally, the experimental results

shown in figure 4 shows extreme asymme-

try (the trajectories spending a dispropor-

tionately long time in the right well, which

is apparently much larger than the left well).

Whereas, the simulation plots are quite sym-

metric. We believe this asymmetry is due to

the natural bend of the shim stock in the di-

rection of the magnet corresponding to the

right potential well. Additionally, as men-

tioned before, there is also a significant dif-

ference between the strength of the magnets,

which contributes to this observed asymme-

try.

6



VI. CONCLUSION

We carried out experiments with the Duff-

ing oscillator in the presence of periodic lat-

eral force. Our experiments did not produce

chaotic behavior in majority of runs due to

certain backdraws of the apparatus. How-

ever, we found that chaotic behavior can even

arise quickly in the presence of such asym-

metries as present in our system. This also

opens up directions for future work where we

can analyze the Duffing oscillator in the pres-

ence of asymmetric wells.
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