JUMPING ON GRANULAR MEDIA
FINAL PRESENTATION
12/22/2014

Alex Lind
Cristian Salgueiro
Casey Trimble
Outline

- Introduction/Background
 - Motivation
 - History
 - Objectives
- Experimental Setup
 - Parameters
 - Measurements taken
 - Test video
- Results
 - Hard ground
 - Granular media
- Conclusion
Outline

• **Introduction/Background**
 • Motivation
 • History
 • Objectives

• **Experimental Setup**
 • Parameters
 • Measurements taken
 • Test video

• **Results**
 • Hard ground
 • Granular media

• **Conclusion**
Introduction

• Granular media, as well as the dynamics of jumping on granular media, is not well-understood.

• We will expand on current knowledge and models using jumping robots
Motivation

• By studying the mechanics of jumping on granular media, we can gain insight into the physics of the media itself (media dispersion, packing, and more)

• From the research that has been done, we know of two modes of jumping
 • Single jump
 • Stutter jump
What Has Been Done?

• Georgia Tech’s CRAB Lab has taken experimental data about lift-off dynamics for a jumping robot

• Results showed stutter jump requires less energy to achieve comparable height on solid ground but performed worse in granular media

• Little to no literature on jumping in fluidized granular media
Hard Ground Theory

- Simulations show exponential relationship between nondimensionalized jump height and nondimensional parameter mg/kA for hard ground tests.
GM Equation of Motion

Free Body Diagram

\[F_{spring} \]
\[F_{GM} \]
\[m_f g \]
\[m_f \ddot{x}_f = F_{spring} + F_{GM} - m_f g \]

\[F_{GM} = k(\text{foot depth}) + \alpha (\text{foot speed})^2 \]

Li, C., Zhang, T., & Goldman, D. (2012). A resistive force model for legged locomotion on granular media, CLAWAR
Objectives

• Experimentally verify hard ground theory (exponential relationship)

• Observe effects of jumper stiffness on jumping on granular media

• Collect experimental data of jumping on fluidized granular media
Outline

• Introduction/Background
 • Motivation
 • History
 • Objectives

• Experimental Setup
 • Parameters
 • Measurements taken
 • Test videos

• Results
 • Hard ground
 • Granular media

• Conclusion
Experiment Architecture

• Hard ground parameter sweep
 • Spring stiffness
 • Forcing frequency
 • Forcing amplitude
 • Jump type

• Granular media parameter sweep
 • Spring stiffness
 • Forcing frequency
 • Fluidization
 • Jump type
Experimental Setup

- Vary forcing frequency and amplitude, stiffness, airflow through GM

- Measurements:
 - Force imparted by the actuator
 - High speed camera tracking motion of robot
Changing the Spring Stiffness

- 3-D printed variable stiffness spring
- Stepper motor mounted to automate stiffness change and track position
Determining Stiffness

- Number of active coils determines stiffness
- Force/compression for various active coil amounts measured using experimental apparatus
Test Videos
Outline

• Introduction/Background
 • Motivation
 • History
 • Objectives

• Experimental Setup
 • Parameters
 • Measurements taken
 • Test video

• Results
 • Hard ground
 • Granular media

• Conclusion
Hard Ground Results

• *Extrapolation
Hard Ground Results
GM Results: Single Jump
GM Results: Stutter Jump
GM Results: Second Peak
Outline

• Introduction/Background
 • Motivation
 • History
 • Objectives
• Experimental Setup
 • Parameters
 • Measurements taken
 • Test video
• Results
 • Hard ground
 • Granular media
• Conclusion
Conclusions

• Summary of goals
 • Effect of spring stiffness on hard ground and GM
 • Effect of fluidizing GM

• Summary of results
 • Hard ground tests do not show exponential behavior when nondimensionalized with respect to amplitude
 • Did see exponential behavior when normalized with respect to equilibrium position
 • Interesting stutter jump dynamics in fluidized GM

• Future work
 • Determine discrepancy between hard ground simulation and experimental results
 • Finer parameter sweep
Acknowledgements

• Jeff “The Man” Aguilar
• Prof. Goldman
• Will Savoie
Questions