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1 Introduction
1.1 Background

Vortex rings have been known for an extraordinarily long time in human history. From smokers
blowing rings to smoke signals created by fire, these dynamics have been in our human history
for quite some time. In this paper we outline a baseline of initial results and an argument for new
surprising results.

1.2 Motivation

Vortex rings are found in many important systems of note. For example, turbulence and turbulent
flow are a commonly studied problem in fluid dynamics. Vortex rings can appear in these turbulent
systems and their formation are of an important note as to why. Modeling the fluid dynamics with
rain and associated turbulent systems could be important as well, as Vortex rings appear right un-
derneath collision of raindrops with the surface of water. The human heart form a vortex ring while
pumping blood, and understanding their formation would be important towards creating replacement
organs for those in need. Vortex rings also appear underneath helicopters, which can be associated
with dangerous conditions due to a loss of lift. Kids and excited physicists play with vortex ring
guns, where a diaphragm and a cylindrical barrel with a hole create an expulsion of air to create
these doughnut shaped rings. In addition, vortexes can form when coughing through a mask as well
under specific conditions.

Figure 1: Vortex Ring
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2 Vortex Ring Dynamics Review
Given the easily made vortex cannon, we can start with the formation of vortex rings through a
simple model of this system. We can use a simple slug model, as provided by Wilson, 2003. This
system has a much faster flow of fluid created within the slug, into a stationary fluid outside the
slug. Viscous friction from the flow and particles colliding into the fluid (or a barrier) cause an
initial slowdown of outer layer expelled by the slug. As the fluid moves, it creates a wake where the
parts that were slowed collect behind and re enter the ring. This creates a ring like flow denoted by
K.

Figure 2: Vortex Ring Slug Model. Provided by Wilson 2003: A Simple Model of Pulsed Ejector Thrust
Augmentation

2.1 Background of fluid dynamics and Analysis By Nitsche 2006

Nitsche gives a good analysis of voracity of fluids, a quantity measured by the local fluid rotation
about an axis. Given a velocity field u(x, t), the voracity is given by ω = ∆ × u. This velocity is
expanded to give the following:

Where the first term gives the transitional component, the second gives a stretch matrix, of which
the eigenvalues are of note. These eigenvalues can give weather the fluid will stretch or compress.
This can show whether the fluid will form sheets or tubes. The last is given by the rotation.

Nitsche also gives a time evolution of voracity given by the naiver stokes equations. This is:

dω

dt
= ω · ∆u + v∆ω

Given, v the viscosity, and the gradient. This can be used as the basis for our analysis as well.

She also mentions that these small a rings are unstable. If it is perturbed, it could forms hexagonal
like rings. This is known as azimuthal instability. This is also usually put in terms of the Reynolds
number.
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3 Materials and Methods
3.1 Approach

We created a simple slug model, made out of 2 PVC pipes. One was 3 inches in inner diameter, and
longer than the 4 inch pipe. The larger one was 4 inches in inner diameter. The inner smaller pipe
was sealed, while we fixed rings of varying diameters on the outer pipe. The inner pipe was placed
inside the outer pipe to create the slug, and bungee cords were attached from the end of the inner
pipe to the outer pipe. The outer pipe was attached securely to a desk with duct tape, to prevent
recoil effects.

By pulling back on the inner pipe, and letting go, we create an impulse of air through the pipe, and
out through the aperture into the room. This impulse may or may not form rings.

Figure 3: Our vortex slug model. The top two images are two snippets of the side camera video of pulling back
of the inner pipe at certain displacements. The bottom is the resulting expulsion of air

We varied 4 parameters - the tenseness of the bungee to control the velocity of the piston, the
stopping point of the inner piston (l0), the initial displacement of the inner piston, and different
diameters of the outer piston. Different bungee cords, with varying k constants were used, as well
changing the attachment at different points of the outer piston, to vary the velocity. Screws where
placed at different locations inside the outer piston to vary the stopping points. Initial displacements
were varied through markings on the inner piston. Different pvc caps with holes drilled of varying
diameters were attached with duct tape onto the outside of the piston.

Each was explored through the upper half of the parameter space. We took a set of bands, a diameter
of the ring, and a l0. We varied the displacement until we did not get rings anymore, and a bit further
so we can explain where rings form.

Videos were taken of the inner pipe when launched to get the velocity. Top down video was also
taken to get any dynamics, and side video was also taken. For the side video, marked displacements
were put on a wooden board and captured on video to get translational velocities from the video
data.

3.2 Reasoning

We created this slug model, as it was relatively simple to make, and could also be scientifically
understood through the works of other people It is well documented in the scientific literature. We
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initially wanted to simulate COVID spread in fluids, so we can simulate cough spread with it as
well. We had enough parameters to vary and to create new results as to why rings form. Given the
online semester, creating a new apparatus with water would be much more difficult and expensive.
We also weren’t sure if we would meet up, so we created this so we can quickly create a experiment
that we can run at home. This is an inexpensive, quick option for results.

4 Qualitative Results

This table shows which parameters we explored which form and do not form rings. Green high-
lighted text forms rings, while red highlighted text did not form rings.

The different stopping points were highlighted at the bottom, while the different diameters are men-
tioned at the top. The change of bands was mentioned at the top.

From this, we can infer several parameters that form and do not form rings. Columns 1 and 2 show
the same diameter, with the band placed at different points as to vary the velocity of the piston.
Regardless of how fast the piston is moving, we still did not form rings at at the same displacement.

Varying l0, our piston stopping point, also did not effect ring formation. Comparing the fourth and
last columns, we see rings form at the same displacements.

The interesting point is the ring at the seventh column, or D=3/4, lo = 1 The ring forms, then
doesn’t form and then forms again as the displacement is increased. This will be more quantitatively
discussed in the next section.

We’ve also observed azithumal instability towards the end of the ring’s lifecycle, before the ring
broke apart. This is probably because the vorticity is decreased as the ring slows down due to
friction with the air around it and so is more vulnerable to perturbations from the environment. The
small perturbations create large scale ripples in the ring, however capturing it on camera and doing
analysis with videos is difficult due to exposure of faint rings.

Azimuthal instability is still being researched, and is quite difficult to measure and explain. From
More and Saffmans work, we know that there is a strain from the the distant parts of the ring, and
the vorticity of the core of the ring. We’ve qualitatively noticed that the ring does expand the further
it goes, and so the strain is increased as the ring expands, causing Azimuthal instablity.
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5 Quantitative Results
5.1 Graphs of Displacement over Diameter Versus Circulation Ratios

Figure 4: Top left: Previous work done by Shariff and A Leonard, a graph of 2 different models and previous
results. Top Right: Our data for a consistent (yet slightly erroneous) set of points. Green denotes points that
form rings, red and orange did not, and purple is the ring that forms again at the 7th column. Bottom left:
a linear separating lines of fit between our points, ignoring the purple point. Orange region denotes our ring
forming area. Green and Blue denotes our non forming area. Bottom right, a polynomial fit comparing the ring
forming points and non ring forming points for circulation values directly above.

5.2 Previous work

Previous work highlighted by Shariff and A Leonard gives us approximations of circulation using
vorticity, the key term of the formation of vortex rings. Circulation is the line integral of a vector
field around a closed curve, while vorticity is a field that describes the local behavior of near some
point. They also bring into account the important quantity L/D, or our displacement divided by the
diameter of the ring. These circulation ratios and L/D values are dimentionless.

Shariff and A Leonard combine results and analysis from three sources. From the figure in the top
left, we have a dashed line of fit, which corresponds to the equation:

Which corresponds to a equation of fit towards vortex rings created in liquids, by Didden 1979

The other equation by the dashed line:

Γgas

Γslug
= 1.41(L/D)−2/3

Represents the work of Pullin 1979, who used similarity theory, and is a better fit for higher Reynolds
numbers

To approximate circulation values, we use Gharib, Rambod, Shariff’s approximation, of vorticity,
assuming that radial flow is zero.
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By integrating the vertical velocity squared of both the piston and the gas for the same time, we can
get a decent approximation of the circulation of the gas, and fit our points.

5.3 Quantitative Methods for a set of results

To get the velocities of the gas and the piston, we used both the side video and the piston/cannon
firing video. We took each frame, marked its displacement from the initial displacement. We then
calculated velocity from multiplying this from the frames per second of each video, then squared
this quantity and divided it by 2. We then took a box integral of the quantity of each frame, and
summed the result. We did this for a set of results that was consistent enough in parameters used
with each other, such as not to scale the error too far.

We also tried optical flow to get the velocities directly. Sadly our FPS was not enough, and we could
not repeat the experiment, as discussed later.

These results were then plotted on the scatter plot in figure 4, in the top right corner.

To get dividing lines between our circulation values, we employ a Support Vector Machine (SVM),
which projects the data points into a higher dimensional space through a kernel trick. This is im-
plemented in scikit-learn in python. In a SVM the margins between different classes of points are
minimized subject to a regularization term c. Support vectors derived from points are taken along
the decision boundary, to minimize the margin between the classes, We employed various high val-
ues of c, and used a polynomial kernel of dimension 3 for the bottom right figure, and a linear kernel
for the bottom left figure.

5.4 Quantitative Analysis and Error

While our results do not fit the curve all too well, and vary by a factor 20, our general direction of
the points do. The endpoint behavior for well formed rings by the pulling curve:

lim
L/D→∞

Γgas

Γslug
= lim

L/D→∞
1.41(L/D)−2/3 = 0

While ours does as well, as noted by the rings at L/D at 3.5 The polynomial SVM(top right) also
starts curving upwards towards these two points, showing that our analysis somewhat starts fitting
the Pulling curve.

We also have points above and below the curve, and as shown by the linear SVM,(bottom left) we
have a bound of the region where well formed rings occur, which shows that a potential line of fit or
a parameter space can be formed from vortex rings.

Our error and differences comes from the low FPS taken from these videos. The approximation
of the integral becomes much more when only 1-2 frames of the piston are launched. While the
side video’s FPS (30) doubles the piston’s FPS (18), both are still prone to this error. These FPS’s
can probably over approximate our circulation values of the gas at low displacement, as the piston
will be more accurate, while at higher displacements and higher piston velocities, over approximate
our piston circulation values, as it travels at much higher speeds while also starting at a larger
displacement. We think that these errors is somewhat proportional, so while its hard to compare to
other peoples results, it still should still have the same behavior as the Pullin curve.

We also took a video with better frames captured of the piston and gas at L/D = 3.75, and got a
circulation ratio of 0.53, which roughly approximates the pullin curve at their circulation ratio of
0.58

5.5 High Reynolds numbers and the unexpected ring

We are also dealing with high Reynolds’s numbers, enough for the turbulent flow regime. We
calculated our Reynolds’s numbers through the approximation given by Shariff and A Leonard,

Re =
Γ

v
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where v is viscosity. To approximate viscosity, we assumed our gas was pure water vapor (which it
mostly was), and got v = .00217.

Our highest Reynolds number for the gas was Re = 4058, which was the purple outlier point, as
mentioned previously in the qualitative section, which does not seem to fit any of the curves above!

We also got slightly better accuracy of the piston and gas from frames captured due to the slightly
slower velocity the gas and piston was moving at, due to having the smallest diameter out of all our
rings (3/4 inches), and the small displacements we needed to use.

Our Reynolds number, since most of our gas comes out of the piston cylindrically, is enough to
enter the turbulent regime. Our velocities of this data point during ring formation also increased and
then decreased dramatically, like it was hitting a brick wall. This leads us to the hypothesis that the
ring formation comes from Kolmogorov’s Theory of Inertial Turbulence, which explains how larger
eddies break up and transfer their energy to smaller eddies. The dramatic slow down from hitting
the gas, allows energy from the initial eddy formed, which doesn’t form a ring, to break up into a
smaller eddy, resulting in a smaller Reynolds’s number, forming a ring.

Figure 5: 6 selected frames, highlighting the slowdown of the purple outlier point, then showing the larger eddy
formation, and subsequently forming a slightly smaller ring

We think that the previous curves for well formed rings don’t take this into account, and could
lead to unexpected ring formation in turbulent, chaotic, fluids! More non linear dynamics should
be explored to capture these results in more detail, as we could have another area in the parameter
space that can form rings that are sensitive to initial conditions. (They did not form all the time!)

For a new problem in Strogatz’s book, if theories, and subsequent approximations were developed to
make why this point arises, and developed simple enough for an introduction to non linear dynamics,
it would be a interesting problem to explore the parameter space, while also noticing that rings
can form in another region that’s not completely expected! The 3-d Navier stokes equations aren’t
completely solved, and the vorticity arising from them is probably very sensitive to initial conditions.

These new rings can explain why perhaps unexpected vortexes can form under helicopters. With the
probably high Reynolds numbers, this could lead to better safety!

6 Discussion, Error and Future Work
Other than the low FPS of the video taken, I also tried to use optical flow to create a more accurate
vorticity approximations (assuming the horizontal flow captured by the laser is even along the radial
axis, and then actually doing the integral around the ring) however, the frames per second were not
enough as denoted by the figure down below. I wanted to do more experiments, however, I had to
quickly leave off campus before thanksgiving due to my family getting COVID. Due to the pace of
the COVID semester, I would have loved to use a high FPS camera, but we would need to use three
of them, which I know can get quite pricey, and putting the expensive camera near the near-ballistic
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slug cannon we made might not turn out so well. In addition, we need high resolution and high FPS
cameras for optical flow which not all cameras have, and would increase the price incredibly.

Figure 6: Optical flow, the arrows are not accurate enough to pick up on enough vorticity, and so we would
need better FPS

In addition, this would take a LOT of code, which would be an entire research project. Clustering,
and subsequent identification of the ring would need to be done, or a manual selection and tracking
of the selection for each frame would need to be done, both which can take up hundreds of hours
of work if we wanted to take this integral. However it can be done, and could lead to dramatically
better fluid dynamic experiments as shown by the figure done. We could use this with vertical lasers
to better observe azimuthal instability, for example, as its still being researched!

We also had tens of thousands of frames of video we could have parsed, but due to time constraints,
and the excessive amount of time this took, we could do this more in the future.

We also could have explored the lower bound of our parameter space. If we reduced the velocity by
a significant amount, we also would have seen low circulation values, and might have seen slightly
different behavior at lower Reynolds numbers. Rings would form less, however, we would need a
lot more bands, or a accurate piston to control the velocity.

In terms of research, I do want to see if we can create rings in spaces rings theoretically as of now
shouldn’t form. Kolmogorov’s theory of inertial turbulence could be to explain. We should create a
more controlled experiment with better cameras, and better bands to explore as to why this happens.

Other errors to take in account is that we needed to patch up our pipe with duct tape, as it did break.
Our screws did also bend and snap all the time, which lead to slight variations in our stopping point,
however we did observe that our stopping point did not change our values in which rings did not
form, so this might be negligible. Our bands also did stretch out, changing our velocity, but since it
was captured on camera, we still captured velocity. We also could have gotten the k constants, and
then the velocities, but due to the low quality of the bands, and them stretching out, this could have
led to error as well.
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