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Introduction

Reuven Ballaban




My Contributions

© Background Research

® Data acquisition & minor rig modifications

° Analysis
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The Rig

® The Jumping Robot rig consists of
a relatively heavy actuator

attached to a pole.

° Spring attached to the bottom of
the actuator allows robot to

bounce.

* Floor, aluminum plate, power and

control cables serve as damping.




The Rig (pt.2)

e Motion tracking camera at 100fps captured the motion of

the robot and output location.
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Background

e Raibert’s Hopper




Background (pt.2)

* An Interesting Strange Attractor in the Dynamics of a

Hopping Robot (A.F. Vakakis, J.W. Burdick, T.K. Caughey)
® 1-cycle stable, “limping” gait (2-cycle)
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® Stable 3-cycle (no motion graph in article), chaos
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Background (pt.3)

® Analysis of a Simplitied Hopping Robot (Daniel E.
Koditschek, Martin Biihler)
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Procedure

airuncarion oaram s-ooor, @ (QUI original goal was to produce an orbital
' map.

* Accomplished this by using a set frequency

and sweeping through different oscillation
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Example from Vakakis, ~ © Results are noisy, but interesting.
et al with highlights for

clarity.




Difficulties

Camera sometimes lost lock on tracking point momentarily,

causing (presumably) negligible noise.

Rig put out enough force to gouge floor, solved by placing

aluminum plate under spring
Rig occasionally orbited pole, resulting in lost tracking.

Original LabView program written to control robot did not
work; had to use more basic tools resulting in more coarse

frequency resolution.




Jumping Robot part 2:

Results and Data

By: Stefan Froehlich




My contributions

* Helped out with data taking

* Helped out with analysis of data




Example trajectories

2—Cycle at 6Hz with amplitude 1125

.\M

|

U

W”

Il

M

|
s00

1-Cycle at 4Hz with amplitude 1250

270

250

250

240

2350

220

=210

200

190

1]
]

1
f=y

1
1000

1
1500




Example trajectories
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6 Hz

Orbit Diagrams
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6 Hz

e As the amplitude increases
there are:

° ) —cycles initially

® 1-cycles
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{ Hz

3—cycle initially
2—cycles
® From 850 to 900

Chaos
° Starting at 950

Notice the transition from 3-

cycles to 2—cycles at 825
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Transition

3 -cycle at 800

Transition at 825

2-cycle at 850
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Transition

* Starts out with the 3-cycle ® These types of states, with

® ‘Transitions into a state short term behavior

whose short term appears different from long term

to be a 2-cycle, but has a occur frequently where the

different long term cycle length bifurcates

behavior
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8 Hz

° l—cycles and 2—cycles
initially

® Quickly diverges into chaos
starting at 775

® Not as much of a cascade

before it reaches chaos
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Chaos

Took data for 8Hz at 775 three times

Trial 1 =1
Follows 3—cycle for a long zdjm

time before finally becoming

chaotic L
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5 Hz

Large region of l—cycles

3—cycles and chaos in

transition region

Followed by 2 Cycles

Interesting bi—stability

occurs 1n transition region
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Trial 1

quickly

Trial 2
Stays at stable 3-

cycle

Trial 3
Stays at 3—cycle for

long time before

transition to 1—cycle
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Bi-stability

Took data for 5Hz at 1212 in the transition region three times

There are stable 1- and 3-cycles at these conditions
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Bi-stability




4 Hz

® There only 1—cycles
® The 1—cycles are stable

® We were unable to find

anything else
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Stable 1-cycle

Video was taken for frequency of 4 Hz and amplitude of 1700




Chaotic regions

e At 8 Hz the system quickly progresses into chaos with very

minimal cascade
® For 6 and 7 Hz there was a cascade into chaos

e For 5 Hz there was the transition to 2—cycles but there was

no chaotic region in the range tested

e For 4 Hz we only Saw l—cycles

* As frequency decreases, the chaotic region for the system

disappears




Jumping Robot part 3:

Analysis and Conclusion

Julien Stalla-Bourdillon




My Contributions

® Data Acquisition
® Data Analysis

® Research




Data Analysis

® Observation of a ‘period-3’, so thanks to Sarkovskii’s relation order and the famous
article ‘period-3 implies chaos’, we know that our system will exhibit some chaotic
behavior.

Example with f=5Hz, amplitude=1200counts:

for f=5Hz, A=1200counts, we observe a period-3!
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Data Analysis

* High sensibility to initial conditions, for a fixed set (frequency, amplitude, initial position

and speed), we observe two really different trajectories.

Example with f=7Hz, amplitude=1200counts:

for amplitude of 1200 counts, frequency=7Hz
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Data Analysis

¢ How to determine if our series is chaotic or not? Different possibilities:

> Graphic analysis

> Power Spectrum Density and the Autocorellation of the signal

(comparison with white noise)

» Use of the Bifurcation Diagram
» Use the ‘0-1 test for chaos™™

» Determine the Largest Lyapunov Exponent

Recall: the sum of the Lyapunov exponents must be negative and at least one of them is positive

*See ‘On the Implementation of the 0—1 Test for Chaos’ from GeorgA. Gottwald & Ian Melbourne




Data Analysis

* Graphic Analysis is not sufficient

e PSD and Autorocorellation of our data exhibts only ‘weak chaos’:

PSD and Autocorellation of a white noise:
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Data Analysis

* For our data, the time-series which look like white noise we have this type of PSD and

autocorrelation:

For {=7Hz,A=1100:
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Data Analysis

® The ‘0-1 test for chaos’ has been test on a lot of well-known systems but is not perfect* but
gives a good idea of the range we need to work on.

» Example with the logistic map:

test 0-1 for chaos for logistic map

bifurcation mgmm for logistic map
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Data Analysis

® On our data, with {=5,6,7Hz and A from 850 to 1200, we get:

Value of the 01 test
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> Best results for f=7Hz and amplitude around 1100 counts and for f=8Hz between 800

and 875 counts.




Data Analysis

* Lyapunov exponents are difficult to extract from a time-series, several methods exist.
The method we used comes from the article ‘A practical method for calculating largest

Lyapunov exponents from small data sets’ from Rosenstein, Collins and de Luca.

® On the time-seris with f=8Hz and A=800, the estimation of the Largest Lyapunov
Exponent was 0.1904 for m=3 and 0.2102 for m=2 with T=10ms.

>> we already knew that this system is chaotic, this gives us more proof. What could be
interesting is to evaluate the whole set of Lyapunov exponents and then apply the
conjectures which link Lyapunov exponents and the dimension of the strange

attractor.(Mori or Kaplan and Yorke)
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Data Analysis

* To rebuild the phase-space, we need an estimation of 2 variables: tau and m.

Several methods have been submitted so far, the time delay (tau) such as the minimum of the mutual

information' or the first minimum of the autocorrelation?.

For the embedding dimension (m, with the relation m2 2.D+1 and D the dimension of the attractor),
one common method is to use the nearest neighbor algorithm (but it can be biased). We evaluate

C(r):

1
ry=Ilim—.> H(r—|x —x.
C(r) = lim — ; (r =[x —x))
C(r)yocr’
And with , we get the correlation dimension (when m is too big, we observe a saturation)

1- ‘Independent coordinates for strange attractors from mutual information’ from Fraser and Swinney

2—’Proper choice of the time delay for the analysis of chaotic time series’




Data Analysis

¢ (Other methods suggest evaluation of m and tau in the same time

(see ‘A Differential Entropy Based Method for Determining the Optimal Embedding

Parameters of a Signal’ from Gautama, Mandic and Van Hulle)

When we apply these two methods on our most chaotic time series (f=8Hz, A=800 counts)

we find:

(T,m)=(15ms,3), and (10ms,?2),




Conclusion

® This jumping robot exhibits chaotic behavior (period-3). We observe several specific
aspects such as bistability and a return to stability (for frequency of 5Hz and 6 Hz, as we
go up in amplitude).

e The system suffers from a lot of uncertainty and noise but we managed to piece
together a nice bifurcation diagram. Some improvement could be made here (and try to

use not only integer frequencies).

® Our time-series look like ‘weak chaos’ and a study for f28Hz and bigger amplitude could
be interesting. Moreover, our algorithms present some defaults and an improvement

could be made to geta better analysis of the attractor.

* In one article, scientists were able to ‘destroy’ the strange attractor and then control

chaos by changing a parameter.




Thank you for your attention!




