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Introduction 



My Contributions  

 Background Research 

 Data acquisition & minor rig modifications 

 Analysis 

 

 



The Team 



The Rig 

 The Jumping Robot rig consists of 

a relatively heavy actuator 

attached to a pole. 

 Spring attached to the bottom of 

the actuator allows robot to 

bounce.  

 Floor, aluminum plate, power and 

control cables serve as damping.  



The Rig (pt.2) 

 Motion tracking camera at 100fps captured the motion of 

the robot and output location. 



Background 

 Raibert’s Hopper 

 

 



Background (pt.2) 

 An Interesting Strange Attractor in the Dynamics of a 

Hopping Robot (A.F. Vakakis, J.W. Burdick, T.K. Caughey) 

 1-cycle stable, “limping” gait (2-cycle) 

 

 

 

 

 Stable 3-cycle (no motion graph in article), chaos  

 

 



Background (pt.3) 

 Analysis of a Simplified Hopping Robot (Daniel E. 

Koditschek, Martin Bühler) 



Procedure 

Example from Vakakis,  

et al with highlights for 

clarity.  

 Our original goal was to produce an orbital 

map. 

 Accomplished this by using a set frequency 

and sweeping through different oscillation 

amplitudes. 

 Results are noisy, but interesting. 

 



Difficulties 

 Camera sometimes lost lock on tracking point momentarily, 

causing (presumably) negligible noise. 

 Rig put out enough force to gouge floor, solved by placing 

aluminum plate under spring 

 Rig occasionally orbited pole, resulting in lost tracking. 

  Original LabView program written to control robot did not 

work; had to use more basic tools resulting in more coarse  

frequency resolution. 



Jumping Robot part 2: 

Results and Data 

By: Stefan Froehlich 



My contributions 

 Helped out with data taking 

 Helped out with analysis of data 



Example trajectories 

2-Cycle at 6Hz with amplitude 1125 

1-Cycle at 4Hz with amplitude 1250 



Example trajectories 

3-Cycle at 6Hz with 

amplitude 825 

Chaos at 7Hz with 

amplitude 1200 



Orbit Diagrams 
6 Hz 



6 Hz 
 As the amplitude increases 

there are: 

 2-cycles initially 

 1-cycles 

 3-cycles with larger amplitude 

 1-cycle in this region at 1025 

 2-cycles 

 What appear to be chaotic 

trajectories with larger amplitudes 

interspersed 

 Chaos 

 Starts at 1212 



7 Hz 

 3-cycle initially 

 2-cycles 

 From 850 to 900 

 Chaos 

 Starting at 950 

 

 Notice the transition from 3-

cycles to 2-cycles at 825 



Transition 

3-cycle at 800 

2-cycle at 850 

Transition at 825 



Transition 

 Starts out with the 3-cycle 

 Transitions into a state 

whose short term appears 

to be a 2-cycle, but has a 

different long term 

behavior 

 These types of states, with 

short term behavior 

different from long term 

occur frequently where the 

cycle length bifurcates 



8 Hz 

 1-cycles and 2-cycles 

initially 

 Quickly diverges into chaos 

starting at 775 

 Not as much of a cascade 

before it reaches chaos 



Chaos  
Took data for 8Hz at 775 three times 

Trial 1 
Follows 3-cycle for a long 

time before finally becoming 

chaotic 

 

Trial 2 
Begins chaotic and has 

large regions of small 

amplitude. 

 

Trial 3 
Begins chaotic and again 

has regions of small 

amplitude 

These regions of small amplitude chaotic motion were common for 8 Hz 



5 Hz 

 Large region of 1-cycles 

 3-cycles and chaos in 

transition region 

 Followed by 2 cycles 

 

 Interesting bi-stability 

occurs in transition region 



Bi-stability 
Took data for 5Hz at 1212 in the transition region three times 
 

There are stable 1- and 3-cycles at these conditions 

Trial 1 
Transitions to 1-cycle 

quickly 

Trial 2 
Stays at stable 3-

cycle 

Trial 3 
Stays at 3-cycle for 

long time before 

transition to 1-cycle 



Bi-stability 



4 Hz 

 There only 1-cycles 

 The 1-cycles are stable 

 We were unable to find 

anything else   



Stable 1-cycle 
Video was taken for frequency of 4 Hz and amplitude of 1700 



Chaotic regions 

 At 8 Hz the system quickly progresses into chaos with very 

minimal cascade 

 For 6 and 7 Hz there was a cascade into chaos 

 For 5 Hz there was the transition to 2-cycles but there was 

no chaotic region in the range tested 

 For 4 Hz we only saw 1-cycles 

 

 As frequency decreases, the chaotic region for the system 

disappears 

 



Jumping Robot part 3:  

Analysis and Conclusion 

Julien Stalla-Bourdillon 



My Contributions  

 Data Acquisition 

 Data Analysis 

 Research 



Data Analysis 

 Observation of a ‘period-3’, so thanks to Sarkovskii’s relation order and the famous 

article ‘period-3 implies chaos’, we know that our system will exhibit some chaotic 

behavior. 

 

Example with f=5Hz, amplitude=1200counts: 



Data Analysis 

 High sensibility to initial conditions, for a fixed set (frequency, amplitude, initial position 

and speed), we observe two really different trajectories. 

 

Example with f=7Hz, amplitude=1200counts: 



Data Analysis 
 How to determine if our series is chaotic or not? Different possibilities: 

 

 Graphic analysis 
 

 Power Spectrum Density and the Autocorellation of the signal 

(comparison with white noise) 

 

 Use of the Bifurcation Diagram 

 

 Use the ‘0-1 test for chaos’* 

 

 Determine the Largest Lyapunov Exponent 

Recall: the sum of the Lyapunov exponents must be negative and at least one of them is positive 

 

 

 

 
* See ‘On the Implementation of the 0–1 Test for Chaos’ from Georg A. Gottwald & Ian Melbourne 



Data Analysis 

 Graphic Analysis is not sufficient 

 PSD and Autorocorellation of our data exhibts only ‘weak chaos’: 

PSD and Autocorellation of  a white noise: 

 

 

 

 

 

 

 

 

 



Data Analysis 

 For our data, the time-series which look like white noise we have this type of PSD and 

autocorrelation: 

 

 

 

  

 

For f=7Hz, A=1100: For f=8Hz, A=8500: 



Data Analysis 

 The ‘0-1 test for chaos’ has been test on a lot of well-known systems but is not perfect* but 
gives a good idea of the range we need to work on. 

 Example with the logistic map: 

 

 

 

 

 

 

 

 

 

 

* Cf ‘Reliability of the 0-1 test for chaos’ from Hu, Tung, Gao and Cao and the answer ‘Comment on “Reliability of the 0-1 test 

for chaos”’ from Gottwald and Melborune. 

 

 

 



Data Analysis 

 On our data, with f=5,6,7Hz and A from 850 to 1200, we get: 

 

 

 

 

 

 

 

 

 

 

 

 Best results for f=7Hz and amplitude around 1100 counts and for f=8Hz between 800 
and 875 counts. 



Data Analysis 

 Lyapunov exponents are difficult to extract from a time-series, several methods exist.  

The method we used comes from the article ‘A practical  method for calculating largest 

Lyapunov exponents from small data sets’ from Rosenstein, Collins and de Luca. 

 

 On the time-seris with f=8Hz and A=800, the estimation of the Largest Lyapunov 

Exponent was 0.1904 for m=3 and 0.2102 for m=2 with τ=10ms. 

 

>> we already knew that this system is chaotic, this gives us more proof. What could be 

interesting is to evaluate the whole set of Lyapunov exponents and then apply the 

conjectures which link Lyapunov exponents and the dimension  of the strange 

attractor.(Mori or Kaplan and Yorke) 

 

 



Data Analysis 

 To rebuild the phase-space, we need an estimation of 2 variables: tau and m. 

 

Several methods have been submitted so far, the time delay (tau) such as  the minimum of the mutual 

information1 or the first minimum of the autocorrelation2.  

 

For the embedding dimension (m, with the relation m≥ 2.D+1 and D the dimension of the attractor), 

one common method is to use the nearest neighbor algorithm (but it can be biased). We evaluate 

C(r): 

 

 

 

And with                      , we get the correlation dimension (when m is too big, we observe a saturation) 

 

1- ‘Independent coordinates for strange attractors from mutual information’ from Fraser and Swinney 

2-’Proper choice of the time delay for the analysis of chaotic time series’ 
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Data Analysis 

 Other methods suggest evaluation of m and tau in the same time  

 

(see ‘A Differential Entropy Based Method for Determining the Optimal Embedding 

Parameters of a Signal’ from  Gautama, Mandic and Van Hulle) 

 

When we apply these two methods on our most chaotic time series (f=8Hz, A=800 counts) 

we find: 

 

(τ,m)=(15ms,3)1 and (10ms,2)2 

 

 



Conclusion 

 This jumping robot exhibits chaotic behavior (period-3). We observe several specific 

aspects such as bistability and a return to stability (for frequency of 5Hz and 6 Hz, as we 

go up in amplitude). 

 

 The system suffers from a lot of  uncertainty and noise but we managed to piece 

together a nice bifurcation diagram. Some improvement  could be made here (and try to 

use not only integer frequencies). 

 

 Our time-series look like ‘weak chaos’ and a study for f≥8Hz and bigger amplitude could 

be interesting. Moreover, our algorithms present  some defaults and an improvement 

could be made to get a better analysis of the attractor. 

 

 In one article, scientists were able to ‘destroy’ the strange attractor and then control 

chaos by changing a parameter.  



Thank you for your attention! 


