Chaotic Dripping Faucet

Joshua Job
Ricky Patel
Nick Pritchard
Caleb Royer

1 December 2011
PHYS 6268 Final Presentation
Georgia Institute of Technology
Outline

- Project Description
- Theoretical Background
- Experimental Procedure
- Primary Data
- Model Comparison
- Error Analysis
- Summary

Fig 1: Droplet break off
Project Description

- Route to chaos in droplet formation
- Bifurcation of period as function of flow rate
- Model the water droplet as a harmonic oscillator
Previous Work

- Originated by Shaw, UCSC\(^1\)
- Also investigated by Kiyono and Fuchikami\(^2\), Coullet et al.\(^6\), and others

Models
- Damped harmonic oscillator
- Fluid/hydro-dynamical models
Harmonic Oscillator

Fig 2: Diagram of harmonic oscillator
Droplet Models

- Shaw’s mass-spring model\(^1\):
 \[
 \frac{d(mv)}{dt} = mg - ky - bv \\
 \frac{dm}{dt} = \text{flowrate} \\
 v = \frac{dy}{dt}
 \]

- Hydrodynamical model\(^2\)

- K&F’s improved mass-spring\(^2\):
 \[
 m \frac{d^2z}{dt^2} + \left(\frac{dz}{dt} - v_0 \right) \frac{dm}{dt} = -kz - \gamma \frac{dz}{dt} + mg, \\
 k(m) = \begin{cases}
 -11.4m + 52.5 & (m < 4.61) \\
 0 & (m \geq 4.61)
 \end{cases} \\
 m_r = 0.2m + 0.3, \quad \text{when} \quad z = z_{\text{crit}}, \\
 z = z_0, \quad \dot{z} = 0, \quad \text{when} \quad z = z_{\text{crit}} \]

\[Q = \pi a^2 v_0.\]
Model Analysis

- Linearly increasing mass
- Varying spring constant
- Droplet break off
Model predicted data
Proposed Experimental Procedure

- Feeder tank fills the reservoir tank
- A stopcock controls the flow rate from the reservoir tank
- A laser and photodiode detect falling drops
- The signal is read by an Analog to Digital Converter
- Period of falling drops measured from data
- A high speed camera used to visualize the falling drops

Fig 3: Proposed experimental setup
Initial Attempt

- 3/32” flexible tube
- Bucket with drilled holes

Problems:
- Drops not falling straight through laser
- Difficult to regulate flow rate
- Difficult to measure flow rate

Fig 4a: Initial experimental setup
Fig 4b: Photodiode and laser
Attempt 2

- Syringe pump used to dispense fluid at a specified rate

Problems:
 - Pump possessed undesired cycling
 - Restricted to using small nozzles
 - Limited syringe volume

Fig 5: Syringe pump
Final Setup

1. Photodiode
2. Laser
3. Reservoir
4. Large diameter flexible tubing
5. Flow regulator

Fig 6a: Final experimental setup

Fig 6b: Final experimental setup
Flow Rate Regulation

- Adjusted flow rate on the pump
- Using linear regression, found conversion factor between FRU and SI units

\[
\left[\frac{mL}{s} \right] = 0.004563 [\text{FRU}]
\]

Fig 7: Flow regulator controls
Data Collection

- NI Analog to Digital Converter
- LabVIEW
 - Used VI made by Nick Gravish

Fig 8: LabVIEW Virtual Instrument
Fig 9: NI ADC
Error Analysis: Nozzle Diameter

- Lateral movement of droplets caused errors in measurement
- Small nozzles magnify imperfections
- After some testing, a larger nozzle diameter produced better results

Fig 10: Sensitivity to nozzle diameter
Error Analysis: Satellite Drops

- Missing drops leads to incorrect period measurements
- Satellite drop counting
 - First incorrectly identified satellite drops as the double-period, 4-period, etc data
 - Corrected to skip satellite drops
Error Analysis: Debouncing

- Double counting top and bottom of drop
- Corrected with measurement refractory period
Data Processing Summary

- MATLAB used for post processing
- Set threshold to eliminate satellite drops
- Changed peak counting method to eliminate double peak
Data Processing Example

Before

After

Poincare Map for 0.210 mL/s

Poincare Map for 0.210 mL/s
Bifurcation Diagram

- Period Doubling
- Chaos
- Periodic Windows

Increasing Flow Rate
Secondary Data – Period 1

T_n vs. T_{n+1} for 0.210 mL/s

T_n vs. Drop for 0.210 mL/s
Secondary Data – Period 2

T_n vs. T_{n+1} for 0.319 mL/s

T_n vs. Drop for 0.319 mL/s
Primary Data – Chaos

T_n vs. Drop for 0.374 mL/s
Secondary Data – Chaotic Attractors

\(T_n \) vs. \(T_{n+1} \) for 0.374 mL/s

\(T_n \) vs. \(T_{n+1} \) for 0.486 mL/s

\(T_n \) vs. \(T_{n+1} \) for 0.579 mL/s
Secondary Data – Period 3

T_n vs. T_{n+1} for 0.365 mL/s

T_n vs. Drop for 0.365 mL/s
Data Analysis and Comparisons

- Universality
 - Requires bifurcation progression as U-sequence
 - Period doubling, chaos, and periodic windows

- Though similar, this could suggest the chaotic faucet does not have a unimodal map (current research)\(^6\)
Qualitative Comparison – Single Period

Primary Data

Reference Data

Model Data

T_n vs. Drop for 0.210 mL/s

T_{n+1} vs. T_n for 0.210 mL/s

Return map

1/12/2012
Qualitative Comparison – Two Period

Primary Data

Reference Data

Model Data

1/12/2012
Qualitative Comparison – Chaos

Primary Data

Reference Data

Model Data

Tₙ vs. Drop for 0.374 mL/s

Tₙ vs. Drop number

Tₙ vs. Tₙ+1 for 0.374 mL/s

Return map
Qualitative Comparison – Periodic Window

Primary Data

Reference Data

1/12/2012
PeriodDoublingRoute to Chaos

- Confirmed period doubling progression
 - Seen in bifurcation diagram
 - Predicted by references and simulation
- Drops from a 5mm nozzle as described by Dreyer, Hickey4:

 “were seen to follow a bifurcation route to chaos producing period-1 and -2 attractors at lower drip rates and many beautiful examples of strange attractors for higher drip rates with a range of instability between the two regions”

= A Beautiful Attractor
Periodic Window Route to Chaos

- Confirmed transient chaos
 - Seen in bifurcation diagram
 - Predicted by references and simulation
Error Analysis Summary

- Debouncing \rightarrow refractory period
- Satellite drop counting \rightarrow threshold
- Missed drops dependent on nozzle diameter
- Pump vibrations and mode interactions
 - Visible to naked eye with syringe pump
 - Patterns form before period doubling, indicating external disturbance
 - Possibly mechanically induced
Error Analysis: Periodic Flow Rate

- Sinusoidal disturbance could cause fluctuation over the T-2/T-4/chaotic region
- Single-period circle

\[T_n \text{ vs. } T_{n+1} \text{ for 0.210 mL/s} \]
Summary and Conclusions

- Two routes to chaos:
 - Period doubling (period-1 to period-2)
 - Transient/periodic windows

- Experimental setup
 - Accurate flow rate necessary
 - Uniform flow rate necessary
 - Buckets are hard to control flow rate and measure drops
 - Nozzle size is very important (error and dynamics)

- Data analysis
 - Satellite drops should not be included
 - Debouncing of double peaks

- Model matches data and literature qualitatively
Questions?
References

List of Figures

3. See reference 3
4. Photo credits Caleb Royer
5. Photo credits Nick Pritchard
6. Photo credits Nick Pritchard
7. Photo credits Ricky Patel
8. Photo credits Josh Job
9. NI.com
11. Photo credits Josh Job
12. See reference 2