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Examples of spontaneous synchronization abound in the biological world, with exam-

ples ranging from the oscillations of cardiac pacemaker cells to the synchronization

of firing neurons. A particularly spectacular example is the emergence of synchrony

that is observed when groups of fireflies of a certain species congregate and flash. In

this experiment, we use an experimental model consisting of 48 flashing LED lights,

monitored by a camera, to study the dynamics of fireflies interacting according to a

modified Kuramoto model. The strength of coupling and number of connections are

both varied over multiple trials, during which the system is allowed to iterate a finite

number of times, at which point the variance in oscillator phase is recorded. From

our collected data, we find evidence of a power law relation between the time until

synchronization and the number of connections between fireflies in the system.

I. INTRODUCTION

The flashing of fireflies is a familiar bi-

ological phenomenon that has been studied

for hundreds of years1. Its purpose is cur-

rently understood as a courtship behavior

used during the mating season of the par-

ticular species, with usually mobile males

flashing to signal typically stationary flash-

ing females1. As is the case for many bio-

logical oscillators, it has been observed2 that

when a population of fireflies flash in response

to each other, coupling their dynamics, the

characteristically nonlinear phenomenon of

synchrony can occur, with the fireflies all

flashing with identical frequencies. The exact

biological and evolutionary advantages of this

behavior are still a topic of debate among sci-

entists, with several models proposed at the

time of writing of this paper. Just as con-
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troversial is the question of which dynami-

cal system best describes this behavior, with

paths to synchronization proposed by many

scientists, such as Avila3 and Ermentraut1,

and a general model for pulse coupled bio-

logical oscillators from Strogatz, which he has

formally proven to produce synchrony for the

case of N oscillators, ∀N ∈ Z(+)4.

In this formulation, the oscillators are

globally coupled and dynamically identical.

Each firefly is assigned a state variable, x,

such that x = f(φ), where f : [0, 1] → [0, 1]

is smooth, increasing monotonically, and con-

cave down. When the state xi of an oscil-

lator reaches the threshold at 1, the state

of each oscillator xj in the system is given

a perturbation ε defined such that xj(t
+) =

min(1, xj(t) + ε)4 (Fig. 1). This model, while

less biologically interesting than others, pro-

vides motivation for the ”integrate and fire”

style of dynamics that we chose to model.

With such a wealth of biological and

mathematical background, our first goal was

to determine which model to use in our exper-

iment. We chose an alternative to the Stro-

gatz model, the mean-field variant of the Ku-

ramoto model (1).

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi) (1)

Where θ is an angular state variable for the

indexed oscillator, defined on the interval

[0, 2π], ωi is the natural frequency of the os-

cillator, K is the coupling strength, and N

is the number of other oscillators in the en-

semble to which the ith oscillator is coupled.

For a more formal bifurcation analysis of this

system, see our wiki page - the full calcula-

tion and proof has been omitted from this

paper in the interest of space. For our exper-

iments, we used our own modified variant of

this equation, in which the summation was

carried out only over the subset of oscillators

that had recently fired. The system for which

the model was implemented is a 6× 8 grid of

fireflies (oscillators) physically modeled as a

6× 8 grid of uniformly spaced LEDs.

II. METHODS

A. Model

The mathematical model we used for

our experiment draws its inspiration primar-

ily from the previously described Kuramoto

model. Unlike the original Kuramoto dynam-

ical system, when calculating the state of the

ith oscillator, our model sums only over the

subset of oscillators that are coupled to the

ith oscillator and have fired at the given time.

dθi
dt

= ωi +
K

N

N∑
j∈fired

Aij sin(θj − θi) (2)

Where Aij is a symmetric 48×48 matrix such

that Aij = 1 if the jth oscillator is coupled to

the ith oscillator, or Aij = 0 if the ith os-
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FIG. 1. An illustration of the dynamics of two oscillators in Strogatz’ model4

cillator is not coupled to the jth oscillator.

The matrices were generated algorithmically

in MATLAB, and were distinguished by ra-

dius and number of connections allowed per

firefly. Each radius choice corresponds to a

unique number of connections, and therefore

the two numbers are interchangeable in de-

scribing a given coupling matrix. The matrix

allows us to treat the number of other oscil-

lators coupled to a given oscillator as an in-

dependent variable, by ensuring that the dy-

namics of oscillator i will only be affected by

the flashing of oscillator j if the two are cou-

pled. This dynamic is biologically motivated

by the fact that a given firefly in a forest will

have a finite range of vision, and therefore

will only respond to other fireflies within a

certain radius. (Fig. 2) For modeling pur-

poses and to legitimize the number of con-

nections as a variable, the system is treated

as isotropic, such that one may imagine the

grid being repeated at each edge ( for exam-

FIG. 2. A visualization for the connections for

r=1. Each point represents a firefly, and any two

fireflies connected by a blue line are coupled.

ple, if you were to walk off of the left edge,

you would find yourself facing the oscillators

on the right side).

Implementation of this model computa-

tionally is then a simple matter of, for each

oscillator i in the ensemble, iteratively sum-

ming over the phase contributions of each

other oscillator that has fired at each time-

step, dt, and updating the phase of the oscil-

lator i accordingly. The matrix Aij will take
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care of any non-coupled oscillators in the sum

by setting their contribution to zero.

B. Experiment

The experimental setup was a 6×8 grid of

LED lights soldered onto a pre-manufactured

LED board. The LEDs were controlled by a

micro-controller based on the Arduino plat-

form, which in turn was programmed us-

ing MATLAB. Above the board, a cam-

era was positioned such that all 48 LEDs

were within its range of sight. The cam-

era was programmed in MATLAB to detect,

at each time step, which LEDs were flash-

ing. This visual input was then processed by

MATLAB, which then communicated with

the LED array through the micro-controller,

telling which LEDs to flash in the next time-

step.

The coupling matrices, Aij, we tested were

those associated to radii of 1, 2,
√

5, 3,
√

13,

4,
√

20, 5, and 6, which correspond to 4, 8,

12, 20, 27, 33, 40, 46, and 47 connections per

firefly, respectively. The numerical values of

K examined were 1, 2, 5, 7, 10, 15, 20, 25, and

30. For each coupling matrix, the experiment

was iterated for each K value, and run for 15

trials with randomized initial conditions cho-

sen such that θi,initial ∈ [0, 2π],∀i ∈ [1, 48].

The relationship between visual radius and

number of connections is shown explicitly in

Fig. 4. For the firefly in the bottom left cor-

ner, each circle of a given color corresponds

to a radius. The fireflies on or within the

circle are coupled to this firefly, with the vi-

sual radius being projected across the grid for

each coordinate such that the visual radius

of each firefly is isotropic. In order to ensure

that our experiments were run without inter-

ference from outside light sources, we placed

a cardboard box over the board and camera,

as can be seen in Fig. 3. When an experi-

ment was run, the MATLAB code that op-

erated the camera and LEDs was allowed to

run for a set number of loop iterations. At the

end of the cycle, the mean squared error in

the phases of the oscillators was computed,

using the formula E = 1
N

∑N
i=1(X̂i − Xi)

2,

where X̂i is a vector containing the predicted

values (all phases equal), and Xi is a vector

containing the true values (the state of the

system at the iteration at which the error is

calculated). Initially, the cycle was run for

3000 loop iterations, but this was found to be

insufficient to see synchronization in smaller

radii, so this number was increased to 6000

for later trials. The system was considered

to be synchronized when the error of the os-

cillator phase dropped below a threshold of

1× 10−30.
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FIG. 3. Left: The LED board, with camera overhead. Right: The box used to prevent interference

from other light sources in the lab.

FIG. 4. A visualization of how radius corre-

sponds to connections.

III. RESULTS

For each pair of coupling strength and con-

nection matrix, the data for number of oscil-

lators fired per cycle (Fig. 4) and number of

iterations until synchronization (Fig. 5) was

recorded (in all plots, the number after the

word error corresponds to the radius of con-

nections). The relationship between coupling

strength and time until synchronization for

several coupling radii is summarized in Fig.

7.

From these plots, it is apparent that the

time until synchronization decreases as the

coupling strength increases. This is to be

expected, as a higher coupling strength im-

plies that a given oscillator’s phase is more

strongly affected by its neighbor’s phase. The

full relationship between time until synchro-

nization and coupling strength can be seen

from Fig. 8, where the curves are exponential

best fit curves for different connection num-

bers. The relationship between number of

connections and synchronization time, plot-

ted for different values of K, is represented

in Fig. 9. It is apparent from this data that

larger radii, and therefore increased number

of connections, leads to shorter synchroniza-

tion time. In fact, it is possible to represent

this with an exponential relationship between
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FIG. 5. Number of oscillators firing at each iteration, for K=2, at trial 15.

FIG. 6. Mean squared error of phases at each iteration, for K=2, at trial 15.

the time until synchronization, which we call

τ , the coupling constant, K, and the num-

ber of connections, c. The exponential curve

coefficients, a and b, for connection number

are plotted in Fig. 10. Plugging these num-

bers into the general form for an exponential
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relation yields:

τ = a ∗ e(bK) ⇒ τ =
18800

c0.67
e(

K∗(1.3c+42.5)
1000 (3)

IV. DISCUSSION

There were a few possible sources of error

during our experiment. Initial data collected

during the experiment had to be thrown out,

as a deficiency was found in the algorithm

for generating our coupling matrices. All of

the data presented here was collected using

the correct coupling matrices. However, be-

cause of time constraints, more data collec-

tion for larger iteration numbers would be

needed to more accurately determine the re-

lationship between the synchronization time

and the independent variables. In particu-

lar, some of the connection numbers associ-

ated with smaller radii will definitely need

longer times to synchronize in order to prop-

erly fit them on an exponential curve. Sec-

ond, because experiments ran for long peri-

ods, it is possible that there was some optical

noise detected by the camera, as the box used

to shield the board had holes and creases.

Further experiments should also be run for a

wider range of N and K values in order to ex-

plore the possibility of bifurcations at certain

K to N ratios. Many improvements could be

made to the model, such as inclusions of the

biological factors discussed by Ermentrout1

and Avila3. These include the addition of

phase shifts for finite response times, and the

modeling of dynamics that are not based on

a pure integrate and fire dynamic, as the Ku-

ramoto model is. Interesting behavior that

could be studied includes the formation of

Chimera states5 in non-locally coupled net-

works, and the pattern formation that can

be observed in models with finite response

times6.

V. CONCLUSION

A great deal was learned while working

on this project, if not about the dynamics

of fireflies, then certainly about experimental

and theoretical methods that may be used

in further studies. The hint of a mathemat-

ical relationship between the time until syn-

chronization for a population of fireflies, the

number of fireflies which they can see, and

the strength of coupling between any two fire-

flies is certainly present, and is approximated

here as an exponential law. The qualitative

dynamics of the system are clear from the

data, with larger values for K and greater

coupling radii/increased connection number

corresponding directly to faster synchroniza-

tion.
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FIG. 7. A plot of coupling strength versus time until synchronization for various coupling matrices.

FIG. 8. Mean synchronization time for different values of K.
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FIG. 9. Mean synchronization time for different connection numbers (radii).

FIG. 10. Approximations for a and b coefficients in equation for τ .
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