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Abstract

In this project, we investigate the way that the mass of a platform affects the coupling between an array of
metronomes in a synchronization scenario. Specifically, we initially develop video processing code that allows us
to track the trajectories of the metronomes utilizing color-coded pointers. Subsequently, we gradually increase the
mass of the platform supporting the metronomes to explore how the time to synchronize changes and compare
our results with the theoretical predictions in a quantitative way.

I. INTRODUCTION

Synchronization phenomena have been extensively studied over the previous centuries due to their
emergence in a huge variety of different fields [1]. Initially observed by the physicist Christiaan
Huygens in 1657, synchronization was investigated in the mechanical domain. Specifically, Huygens
noticed synchronization taking place between two pendulum clocks hanging by an overhead beam in
his laboratory. Although his initial conjecture on the nature of the coupling mechanism was wrong –
believing it to be due to air fluctuations caused by the movement of the pendulums – Huygens did push
forward with his experiments, determining the stability properties and time properties of his pendulum
system, albeit without the mathematical tools that enable him to rigorously describe them [2].

The need to study synchronization has become apparent by the variety of different disciplines where
relevant models have been employed. The resurgence of interest in synchronization was in part due to
their use in modeling biological phenomena [3]. One striking example is the synchronization of firefly
light emission [4], while different cell types have been shown to operate with oscillatory behaviors that
synchronize as needed. As is often the case, some of the most interesting results regard the operation
of the brain. Norbert Wiener, during his studies of human brain waves, observed an increase of activity
in electroencephalograms in a narrow frequency band around 10Hz. As such, he hypothesized that
oscillating elements in the brain exhibited collective behavior leading to this frequency matching [5].
Although Wiener did not create a theory regarding those findings, subsequent researchers have discovered
the way that neurons synchronize their spiking behavior in order to create macroscopic properties such
as memory storing [6].

Beyond biological systems, synchronization has been both observed and leveraged in a number of
different areas [7]. It is of great interest to mention synchronization phenomena in the social sciences.
Due to the influence that personal opinions of individual agents have on their environment, the emergent
collective behavior of rational agents has been investigated from a synchronization-theoretic point of
view. In [8], the authors propose a Kuramoto-based model of opinion formation that goes beyond the
typical consensus-oriented ones that have been studied.

Various engineered systems have been designed based on synchronization principles. Data-mining
algorithms have been proposed, which encode data vectors – taken by a database of raw data – into
vectors of natural frequencies for an oscillators’ dynamical model, expecting that an algorithm simulating
synchronization dynamics will group similar data in clusters, thus indicating patterns in the data sets [9].
Similarly, the power production, dissipation, transmission, and consumption of a power grid represents
a dynamical problem and the power grid can be seen as an example of a system of oscillators, akin to
a second order Kuramoto model [10].

Despite the fact that the synchronization of mechanical oscillators was the first such phenomenon
to have been studied, it remains an active research topic even to this day. Delving deeper into the
underlying mechanisms and expanding our understanding of the emergent behaviors, efforts have been
focused on the experimental study of metronome synchronization. Metronomes have been utilized as
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a tool for emulating the pendulum clocks of Huygens in a more compact manner. Pantaleone [11]
presented a theoretical framework for the synchronization mechanism of metronomes coupled via a
platform restricted to move in a single dimension. He further demonstrated how the derived equations
could lead to a Kuramoto – a popular theoretical system that captures the phase dynamics of coupled
oscillators [12] – model of the process.

The dynamical system proposed by Pantaleone has been investigated with respect to various properties.
The nature of the steady state frequency locking has been examined in various publications [13], where it
has been observed that in large numbers of metronomes, there are different emergent equilibria. During
phase locking, the metronomes converge to the same phase, in anti-phase locking, the system converges
a state where two clusters with phase difference of π is found, while in chimera states a part of the
metronome population synchronizes while another oscillates incoherently [14] Furthermore, coupled
mechanical oscillators have been investigated on a number of their properties. The authors of [15] very
recently published a stability analysis of the synchronization of a system of two pendulums, which is
indicative of the theoretical interest – and difficulty – of the metronome system analysis in the scientific
community. The authors of [16] investigate the behavior of coupled metronomes of different lengths,
while in [2] the authors study bifurcation phenomena in a system of two weakly coupled metronomes.
Similarly, in [17] the emergent behavior of two metronomes was changed via varying the rolling friction
of a PVC rolling basis and bifurcations diagrams were presented and analyzed.

Along those research directions, in this project we will focus on the robustness, stability and conver-
gence properties of a system of three coupled oscillators exhibiting phase locking, and the effect that
changes in the mass of the platform has on the aforementioned properties. Towards this, we employed a
widely-used structure of metronomes operating on a common platform, itself resting on two soda cans.
The mass of the platform was shifted by the addition of weights in equal discrete steps, while visual
measurements allowed us to derive the trajectories of the metronomes.

II. EXPERIMENTAL SETUP

In this section, we will describe the experimental setup that was constructed in this project. Our
main components are the metronomes themselves. During the measurement process, we utilized three
metronomes. Although there have been research endeavors where larger numbers of metronomes have
been considered, we chose to only use three of them for two reasons; one being the fact that the
measurement process itself becomes harder as more metronomes are used (and the need for higher
precision equipment becomes more apparent), while from a theoretical standpoint, we have seen that
the more quantitative experiments have kept the numbers of devices at most three. The metronomes
used were of the brand Wittner, whose frequency was set at 184 beats (half-oscillations) per minute.
This corresponds to oscillations with a period equal to T = 0.652s. The energy of the metronomes is
supplied via a hand-wound spring. The way this energy is utilized will be described explicitly in the
sequel.

The coupling was achieved via a board, comprising a simple piece of rigid material. This rigidity is
important in the lossless transmission of inertial forces between the metronomes. Furthermore, we tried
to keep the weight of the board relatively low, using either foam or a light oven pan. The board and
the metronomes, in turn, rest upon two soda cans, which are also rigid as to minimize the deformation
and, by extension, the friction of the platform. This mechanism will also become more apparent in the
sequel. The soda cans allow the system to move in only one direction. As will be further explained,
in order to search the parameter space of the system, we increased the mass of the platform by adding
weights. The weights used were small tomato sauce cans, with masses equal to either 170g or 227g.
The structure is shown in Fig.1.

The most challenging part of the project was the gathering and processing of the measurements.
Towards that, we chose to obtain visual measurements of the system oscillations. The video acquisition
system comprises a phone camera, a number of paper wafers and a computer. The camera resolution
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Fig.1: The experimental setup used for the project.

is 3840 × 2160, recording at 30 Hz. The paper wafers used are made of brightly colored paper, and
are leveraged to allow for the tracking of the metronome bobs. Specifically, we attached the pointers in
the bottom end of the bobs. This way the movement of the metronome is captured more easily due to
the smaller frame needed for the camera to keep all the metronomes in view while being close enough
for the processing software to track the positions of the wafers. Furthermore, special care was taken
to choose a background that was sufficiently white to allow the software to distinguish the colored
pointers.

To capture the trajectory of the oscillating metronomes, we utilized Matlab code, leveraging the
video processing and image recognition software integrated therein. After recording the video of the
metronome response, the file was read by Matlab and the image was separated into 3 parts, each
corresponding to a single metronome. Afterwards, a code was developed that searched each frame of
the video for the colored wafer on the metronome bob. Furthermore, to increase the performance of
the algorithm, we partitioned the frame into different areas and search for the colored wafers only in
those that contained the metronome. Since in the preprocessing phase of the trial we had saved the
RGB color code corresponding to each wafer, the code was tasked with finding pixels in the image
with the appropriate RGB code. Once the wafers were located, that point was marked as the required
point. By locating both the end of the bob and the pivot point of metronome the same way, the angle
of the metronome was calculated as φi = arctanδyp/δxp.

III. THEORETICAL MODEL

Throughout the literature, we have found two different ways of theoretically analyzing coupled
metronome systems. The first is a low-level second order model derived by the Euler-Lagrange equations
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[18], [19], given, for all i ∈ {1, . . . , N} metronomes, as

φ̈i + bφ̇i +
g

l
sinφi +

1

l
ẍ cosφi + F̄i = 0, (1)

(M +Nm)ẍ+Bẋ+Kx+ml
N∑
j=1

sinφi = 0,

where φi denotes the metronome bob’s angle with the horizontal axis, x the platform position, l the
length of the bob, and m,M the mass of the metronomes (assumed to be identical) and the platform,
respectively. The mass M will be the parameter changed throughout our trials and its effect of the
coupling strength will be investigated experimentally. I can be seen that the system consists of N + 1
second order equations of motion, corresponding to the N metronomes and moving platform. This model
is quite useful in showcasing the coupling mechanism in the more physical level. Each metronome has
an internal dissipative force due to friction, bφ̇i, which would stop the oscillations in a free metronome.
In order to maintain the oscillation amplitude, metronomes are fitted with a mechanism that attenuates
the dissipation, called an “escapement” mechanism. The force of the escapement mechanism is denoted
by F̄i, and is typically modeled as a van der Pol term. It can also be seen that each metronome is
driven by the inertial force of the moving platform due to the term 1/lẍ cosφi. The platform equation
demonstrates the coupling mechanism between metronomes. It can be seen that the oscillation of the
platform is affected by a friction force Bẋ which is kept at a minimum by the use of rigid soda cans.
The platform is also driven by the movement of the metronomes. This “feedback” coupling between
metronomes and platform is the mechanism by which the metronomes regulate their phase difference.

Kuramoto models are simple first order models that have been shown to capture a variety of syn-
chronization phenomena. In their usual form, the Kuramoto oscillator model is given by

θ̇i = ωi +
K

N

N∑
j=1

sin(θi − θj), ∀i ∈ {1, . . . , N}, (2)

where θi, ωi model the phase and angular velocity of the i-th metronome respectively. Note that θi is
not a physical angle like φi, but rather the phase of the oscillation of the bob. It has been shown that,
via the application of averaging techniques [11], the behavior of the coupled metronome system can
be indeed studied via a Kuramoto model. The coupling parameter K is a function of the mechanical
properties of the system and will change as the mass of the platform increases.

IV. EXPERIMENTAL RESULTS

Initially, we conducted a simple trial that demonstrated a 3 phase synchronization/desynchronization
process and was used to test and debug the tracking code. The metronomes were wound by hand before
being placed on the platform. Afterwards, the platform with the oscillating metronomes was placed on
the soda cans, effectively activating the coupling forces between them. In this phase of the run, the
platform begun oscillating and perturbed the phases of the metronomes, forcing them to converge to a
phase-locked state. In the third phase of the run the platform was moved off the soda cans. We observed
that after removing the coupling, the metronomes desynchronized. Although the ideal dynamics would
not predict desynchronization to take place, the movement of the platform and the disturbances due to
air disturbances introduced forcing that caused this phenomenon to take place. Fig.2a we can see that
after the coupling between the metronomes becomes active, there is a transience period during which
the phase difference is nonzero. After sufficient time has passed, the metronomes get synchronized, and
remain so. This holds because it has been shown that for a system of coupled Kuramoto oscillators,
the state where the phase difference is an even multiple of 2π is asymptotically stable. However, in
Fig.3 the metronomes are taken off the platform. Looking at the Kuramoto oscillator, in the ideal case,
it should hold that θ̇i = ωi, implying that the phases should continue to be synchronized (since the
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(a) Metronome trajectories before coupling becomes active.
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(b) Metronome trajectories after coupling takes place: tran-
sience and eventual synchronization.

Fig.2: Synchronization of metronomes.
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Metronome trajectories after the decoupling takes place, and subsequent desynchronization.

metronomes have the same eigenfrequency). However, due to disturbances from the movement of the
platform, the metronomes do eventually desynchronize.

Subsequently, we performed a number of experimental runs that were designed to showcase the change
in synchronization speed as the mass of the platform increased. The most challenging part in this problem
was decoupling the different parameters in each problem. Stopping the metronomes, changing the mass
and then restarting the experiment would mean that we would have no control over the initial conditions
of the system; especially during the placement of the platform on top of the cans. Instead, the change of
the mass was made once the metronomes had synchronized. Thus, on a the fully synchronized system, we
placed a single weight on the platform, changing the coupling strength between the metronomes. After-
wards, to study the time of synchronization of the system in a systematic manner, we placed an obstacle
on the path of one of the metronomes – specifically when φi = 90 – for a specific amount of time. Since
the frequency of the metronomes remains constant, the phase discrepancy created during this time period
will be the same in all runs of the system. The metronomes were then allowed to reach synchronization
again, and the time to synchronize was measured. The data gathered are shown in the table that follows.
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Time to achieve synchronization as a function of the platform mass.

Synchronization time with different platform mass
Foam platform Tin platform

Mass (kg) Time (sec) Mass (kg) Time (sec)
∼ 0 8 0.200 10

0.170 13 0.654 31
0.340 43 1.108 66
0.567 50 1.562 600
0.794 80 2.016 ∞

It is interesting to see the trend that emerges as the platform mass increases, specifically, that the
synchronization rate decreases. Looking at equation (2), we employ the results of [20], where the
following Theorem is stated:
Theorem: The Kuramoto model given by (2) with K > 0, will synchronize to phase differences of
an even multiple of 2π. The rate of approach to synchronization is no worse that (2K/πN)λ2(NI −
1N1

T
N/N), where I is the identity matrix of appropriate dimension, 1N a vector of ones and λ2(A) is

the Fiedler eigenvalue of a matrix A.
Consequently, the linear dependence of the synchronization rate to the coupling parameter K implies

that the increase in the mass has decreased K. To see the explicit dependence of K to M , we note that,
due to [11], the coupling parameter is found to be

K =

√(
3
β

µ

)2

+

(
β

γ

)2(
γ

2N

)
,

where the only term related to the platform mass is β =
(

m2r2

(M+2m)I

)
. Therefore, increasing the platform

mass, decreases β and, by extension, decreases the coupling strength K. In Fig. 4, we see the change
of synchronization time as the mass changes.

V. CONCLUSION

In this project, we analyzed the behavior of a system of three metronomes, emulating the initial
experiments by Huygens, and performed experiments to characterize the relationship between the mass
of the moving platform and the time to synchronize. Initially, we developed software that was able to
determine the time evolution of the angle of the metronomes via visual measurements. Specifically, the
code decomposes the video into different partitions at each frame, depending on the position of the
platform, and locally searches for color-coded pointers to determine the position of the metronome bob.
The angle is found trivially as a result. After observing the importance of coupling strength through the
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platform’s behavior, we considered a way that would allow us to measure the time of synchronization
from almost identical initial conditions as the platform mass was gradually increased. The theoretical
connection between platform mass and synchronization time agrees from a qualitative point of view with
our results, but a more quantitative analysis would require a careful consideration and computation of the
different parameters that affect the time of synchronization. This line of research would experimentally
support the connection between the abstract Kuramoto oscillator model and the Euler-Lagrange based
second-order mechanical model of metronome synchronization.
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