Effects of Forcing on Synchronized Rijke Tubes

CHELSEA RUSSELL, MITCHELL PASSARELLI, VARUN SHARMA

Motivation

Relation between Rijke tube and general combustion

Objectives

- Examine 2 things:
 - 1. Examine how Rijke tubes synchronize when coupled together.
 - 2. Examine how forcing affects that synchronization.

Synchronization Regions

- To traverse the synchronization diagram vertically (i.e., reduce coupling strength), the transmission coefficient of the coupler would be reduced by packing it with sound damping material.
- ▶ To traverse the synchronization diagram horizontally, the ratios of the lengths of the Rijke tubes would be varied.
- For each of the four test cases, the forcing frequency and amplitude would be varied to determine the effects.

Experimental Setup Overview

- Similar to the image on the right, with a few differences:
 - ▶ Tubes made out of steel.
 - ► Tubes connected with small coupler pipe.

Image Source: https://www.researchgate.net/figure/a-The-Rijke-tube-shown-with-a-heating-element-placed-toward-the-bottom-suspension_fig1_273706574

Acrylic tube

torch

Electric Heater

Hair-Dryer

Variac

Mica Tiles

Nichrome Wire

Electric Heater

Experimental Setup

Experimental Setup T-joints & Coupler Lengths

Experimental Setup Different Tubes & Length Extenders

Forcing Tube (Not Used)

Speaker

Microphones & DAQ Setup

Mic

Acquisition System

Synchronization

Results & Discussion Relevant Theory

Synchronization can be detected by visually inspecting the time variation of the phase difference:

$$\Delta \phi = \phi_1 - \phi_2$$

▶ Alternatively, one can compute the phase-locking value (PLV):

$$PLV = \frac{1}{T} \left| \sum_{t=1}^{T} e^{i\Delta\phi} \right|$$

- ▶ PLV \approx 1 => phase-locked.
- ▶ PLV \approx 0 => no synchronization.

Results & Discussion Time Series

Results & Discussion Time Series (Zoomed In)

A = Noise

B = Thermoacoustic Oscillation

Results & Discussion Frequency Spectra

 Operating with a 15 cm long coupler produced the same frequency tones for each case.

Results & Discussion Phase Difference & Phase-Locking Value

Results & Discussion Ambient Data

- Collected without running the Rijke tubes.
- Illustrates the presence of a low frequency ambient pressure oscillation in the room.
 - Caused by ventilation system in the room.
- This tone was removed via a high-pass filter applied to the data (cut-off = 100 Hz).

Conclusions

- What have we actually observed?
 - Normal synchronization, but seen through the lens of Rijke Tubes
 - ▶ What this means we accomplished

▶ What do we want to do from here?

Issues with Setup

- Steel gets really hot, so limited to 1 minute.
- Forcing tube altered the acoustics, preventing the formation of the thermoacoustic instability.
- Adding packing peanuts to the coupler stopped all oscillations from occurring.
- Leakage issues at joints.