Experimental Analysis of Metronome Synchronization

Aris Kanellopoulos, Nick-Marios T. Kokolakis, Filippos Fotiadis

Nonlinear Dynamics and Chaos
Outline

1 Introduction

2 Experimental setup

3 Measurement setup

4 Result analysis

5 Conclusion and future work
1 Introduction
2 Experimental setup
3 Measurement setup
4 Result analysis
5 Conclusion and future work
Introduction

- Synchronization of coupled oscillators \(\Rightarrow\) Two or more systems interact and move together.
Introduction

- Synchronization of coupled oscillators \Rightarrow Two or more systems interact and move together.
- Accidentally discovered by Christiaan Huygens when observed pendulums hanging from beam.

Applications

- Biology: Firefly synchronization.
- Neural/Pancreatic/Pacemaker cell synchronization.
- Computer science: Distributed power grids.
- Social science: Opinion formation. Audience applause synchronization.
Introduction

- Synchronization of coupled oscillators ⇒ Two or more systems interact and move together.
- Accidentally discovered by Christiaan Huygens when observed pendulums hanging from beam.

Applications

- Biology:
 - Firefly synchronization.
 - Neural/Pancreatic/Pacemaker cell synchronization.
Introduction

- Synchronization of coupled oscillators ⇒ Two or more systems interact and move together.
- Accidentally discovered by Christiaan Huygens when observed pendulums hanging from beam.

Applications

- Biology:
 - Firefly synchronization.
 - Neural/Pancreatic/Pacemaker cell synchronization.
- Computer science:
 - Distributed power grids.
Introduction

- Synchronization of coupled oscillators ⇒ Two or more systems interact and move together.
- Accidentally discovered by Christiaan Huygens when observed pendulums hanging from beam.

Applications

- Biology:
 Firefly synchronization.
 Neural/Pancreatic/Pacemaker cell synchronization.

- Computer science:
 Distributed power grids.

- Social science:
 Opinion formation.
 Audience applause synchronization.
Introduction

- Synchronization of coupled oscillators ⇒ Two or more systems interact and move together.
- Accidentally discovered by Christiaan Huygens when observed pendulums hanging from beam.

Applications

- Biology:
 - Firefly synchronization.
 - Neural/Pancreatic/Pacemaker cell synchronization.

- Computer science:
 - Distributed power grids.

- Social science:
 - Opinion formation.
 - Audience applause synchronization.

Project objective:
Investigate synchronization of mechanical oscillators.
Experimental setup

- Coupled mechanical oscillator system → Metronomes on moving platform.
Experimental setup

- Coupled mechanical oscillator system \rightarrow Metronomes on moving platform.

Experimental equipment

- N number of metronomes \rightarrow subsystems that oscillate at specific frequencies.
Experimental setup

- Coupled mechanical oscillator system → Metronomes on moving platform.

Experimental equipment

- N number of metronomes → subsystems that oscillate at specific frequencies.
- Light platform made of foam acting as coupling between the metronomes via inertial force transfer.
Experimental setup

- Coupled mechanical oscillator system \(\rightarrow\) Metronomes on moving platform.

Experimental equipment

- \(N\) number of metronomes \(\rightarrow\) subsystems that oscillate at specific frequencies.
- Light platform made of foam acting as coupling between the metronomes via inertial force transfer.
- 2 soda cans, acting as a base that is able to move in one dimension.
Experimental setup

- Coupled mechanical oscillator system → Metronomes on moving platform.

Experimental equipment

- \(N\) number of metronomes → subsystems that oscillate at specific frequencies.
- Light platform made of foam acting as coupling between the metronomes via inertial force transfer.
- 2 soda cans, acting as a base that is able to move in one dimension.
- Camera-equipped smartphone, used to measure positions of the metronomes.
Experimental setup

- Coupled mechanical oscillator system → Metronomes on moving platform.

Experimental equipment

- \(N \) number of metronomes → subsystems that oscillate at specific frequencies.
- Light platform made of foam acting as coupling between the metronomes via inertial force transfer.
- 2 soda cans, acting as a base that is able to move in one dimension.
- Camera-equipped smartphone, used to measure positions of the metronomes.

For educational purposes, we employed \(N = 3 \) metronomes to learn how to gather data and develop the required code.
Measurement setup

Measurement equipment

- Used camera phone to capture video of metronomes.
- 2 sets of markers were used for position tracking.
Measurement setup

Measurement equipment
- Used camera phone to capture video of metronomes.
- 2 sets of markers were used for position tracking.

Measurement process
- Metronomes were initialized by random initial positions → Mechanical energy input via spring winding.
Measurement setup

Measurement equipment

- Used camera phone to capture video of metronomes.
- 2 sets of markers were used for position tracking.

Measurement process

- Metronomes were initialized by random initial positions → Mechanical energy input via spring winding.
- Marker was placed on the edge of the pendulum, used to measure position wrt point of reference.
Measurement setup

Measurement equipment

- Used camera phone to capture video of metronomes.
- 2 sets of markers were used for position tracking.

Measurement process

- Metronomes were initialized by random initial positions → Mechanical energy input via spring winding.
- Marker was placed on the edge of the pendulum, used to measure position wrt point of reference.
- Marker was placed on the center of metronome, used as point of reference.
In order to derive trajectories from video, we developed a Matlab script for motion capture.

- Load video to Matlab using `VideoReader` object.
- Read frame and save as RGB matrix.
- For $i = 1, \ldots, N$ metronomes, determine corresponding positions and reference points.
- Determine x_i, y_i positions of reference point and edge of pendulum.
- Compute $\phi_i = \arctan(x_i, y_i)$.
- Find trajectories of angles for the N metronomes.
In order to derive trajectories from video, we developed a Matlab script for motion capture.

- Load video to Matlab using VideoReader object.
In order to derive trajectories from video, we developed a Matlab script for motion capture.

- Load video to Matlab using `VideoReader` object.
- Read frame and save as RGB matrix.
In order to derive trajectories from video, we developed a Matlab script for motion capture.

- Load video to Matlab using VideoReader object.
- Read frame and save as RGB matrix.
- For $i = 1, \ldots, N$ metronomes,
Measurement setup

Video analysis

In order to derive trajectories from video, we developed a Matlab script for motion capture.

- Load video to Matlab using VideoReader object.
- Read frame and save as RGB matrix.
- For $i = 1, \ldots, N$ metronomes,
 - Determine corresponding positions and reference points.
In order to derive trajectories from video, we developed a Matlab script for motion capture.

- Load video to Matlab using *VideoReader* object.
- Read frame and save as RGB matrix.
- For $i = 1, \ldots, N$ metronomes,
 - Determine corresponding positions and reference points.
 - Determine x_i, y_i positions of reference point and edge of pendulum.
Video analysis

In order to derive trajectories from video, we developed a Matlab script for motion capture.

- Load video to Matlab using `VideoReader` object.
- Read frame and save as RGB matrix.
- For $i = 1, \ldots, N$ metronomes,
 - Determine corresponding positions and reference points.
 - Determine x_i, y_i positions of reference point and edge of pendulum.
 - Compute i-th angle $\phi_i = \arctan(x_i, y_i)$.
In order to derive trajectories from video, we developed a Matlab script for motion capture.

- Load video to Matlab using *VideoReader* object.
- Read frame and save as RGB matrix.
- For $i = 1, \ldots, N$ metronomes,
 - Determine corresponding positions and reference points.
 - Determine x_i, y_i positions of reference point and edge of pendulum.
 - Compute i-th angle $\phi_i = \arctan(x_i, y_i)$.
- Find trajectories of angles for the N metronomes.
Result analysis

Observed trajectories – Initial phase

- Metronomes are initialized from random angles.
During $\sim 30, 45$ sec. we observe anti-phase synchronization of one metronome.

Eventually, all metronomes achieve synchronization.
Result analysis

- Metronomes are moved off the base – mechanical coupling is lost.
- Synchronization is lost due to perturbations from movement.
Result analysis – Theoretical analysis

- Need to evaluate theoretical models against experimental results.
Result analysis – Theoretical analysis

- Need to evaluate theoretical models against experimental results.
- Develop code to compare evolution of metronome synchronization in simulation and experiment.

\[
\begin{align*}
\phi_i + b \dot{\phi}_i + g l \sin \phi_i + \frac{1}{l} \ddot{x} \cos \phi_i + \bar{F}_i &= 0, \\
(M + n m) \ddot{x} + B \dot{x} + Kx + ml \sum_{j=1}^{N} \sin \phi_i &= 0.
\end{align*}
\]
Result analysis – Theoretical analysis

- Need to evaluate theoretical models against experimental results.
- Develop code to compare evolution of metronome synchronization in simulation and experiment.

Theoretical model

\[
\ddot{\phi}_i + b\dot{\phi}_i + \frac{g}{l}\sin\phi_i + \frac{1}{l}\ddot{x}\cos\phi_i + \bar{F}_i = 0, \\
(M + nm)\ddot{x} + B\dot{x} + Kx + ml\sum_{j=1}^{N}\sin\phi_i = 0.
\]
Result analysis – Theoretical analysis

- Need to evaluate theoretical models against experimental results.
- Develop code to compare evolution of metronome synchronization in simulation and experiment.

Theoretical model

\[
\ddot{\phi}_i + b \dot{\phi}_i + \frac{g}{l} \sin \phi_i + \frac{1}{l} \ddot{x} \cos \phi_i + \bar{F}_i = 0,
\]

\[
(M + nm) \ddot{x} + B \dot{x} + Kx + ml \sum_{j=1}^{N} \sin \phi_i = 0.
\]

- \(N\) equations of motion (based on E-L).
Result analysis – Theoretical analysis

- Need to evaluate theoretical models against experimental results.
- Develop code to compare evolution of metronome synchronization in simulation and experiment.

Theoretical model

\[
\ddot{\phi}_i + b\dot{\phi}_i + \frac{g}{l} \sin \phi_i + \frac{1}{l} \ddot{x} \cos \phi_i + \bar{F}_i = 0,
\]

\[
(M + nm)\ddot{x} + B\dot{x} + Kx + ml \sum_{j=1}^{N} \sin \phi_i = 0.
\]

- \(N\) equations of motion (based on E-L).
- Equation of motion of platform.
Result analysis – Theoretical analysis

- Need to evaluate theoretical models against experimental results.
- Develop code to compare evolution of metronome synchronization in simulation and experiment.

Theoretical model

\[
\ddot{\phi}_i + b\dot{\phi}_i + \frac{g}{l} \sin \phi_i + \frac{1}{l} \ddot{x} \cos \phi_i + \bar{F}_i = 0,
\]

\[
(M + nm)\ddot{x} + B\dot{x} + Kx + ml \sum_{j=1}^{N} \sin \phi_i = 0.
\]

- \(N\) equations of motion (based on E-L).
- Equation of motion of platform.
- Coupling between metronomes via perturbation force due to \(\ddot{x}\).
Conclusion and future work

Conclusion
- Set up the experiment to achieve synchronization of metronomes.
- Investigate the measurement environment to achieve position tracking.
- Developed Matlab code for visual position tracking.
- Studied the literature for appropriate mathematical models.

Future work
- Analyze the fit of the mathematical model.
- Conduct experiment with greater number of metronomes.
Conclusion and future work

Conclusion

- Set up the experiment to achieve synchronization of metronomes.
- Investigate the measurement environment to achieve position tracking.
- Developed Matlab code for visual position tracking.
- Studied the literature for appropriate mathematical models.

Future work

- Analyze the fit of the mathematical model.
- Conduct experiment with greater number of metronomes.
Thank you