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Introduction 

The simple pendulum only has one stable state: the 
vertically down orientation (a) 
 
But if the axis undergoes vertical perturbation, 
three different equilibrium states are possible:  

(a) Stationary down  
(b) Stationary up 
(c) Continuous rotation in either direction 
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(c) 

ω 
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ω 

Regions of 

stability for each 

equilibrium state. 

 

 Blackburn et al., 

1992. 



Objectives 

We investigated the dynamics of an inverted pendulum subjected 
to periodic forcing, both numerically and experimentally.  
 
We were trying to answer the following questions: 
 
1. What amplitudes and frequencies of periodic forcing allow the 

inverted pendulum to remain upright? (i.e. what are the 
regions of stability?) 

2. Does the region of stability change when additional harmonics 
are added to the forcing function? 

3. Can our theoretical findings be validated through laboratory 
experiments? 



Modeling: Equation of Motion 

General equation of motion for a pendulum subjected 
to vertical harmonic forcing 
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 is the angular coordinate  
b is the damping coefficient 

I is the total moment of inertia of the system 
M is the mass of the pendulum 
Normalizing time according to the transformation t --> t  

Q = ωoI/b; Ω = ω/ωo;  
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Modeling: Jacobi Elliptic Function  

To create non-sinusoidal forcing we used 
the Jacobi Elliptic function cn(t, m), 
where m є [0,1] 
 
Special cases: 
cn( t, m=0) = cos t 
cn( t, m=1) = sech t 

 

Why Jacobi Ellipticals? 
 
They mimic the dynamics of the inverted 
pendulum. As m → 1 the function has a 
period lengthening bottleneck around 0. 
 
  
 

Sanjuan, 1998 



Modeling cont. 

We employed a fourth order Runge Kutta routine to compute 
numerical solutions to the equation of motion in MATLAB. 

With the Jacobi Elliptical function, our equation of motion is now: 
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This is equivalent to the 2D system of differential equations: 
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Preliminary Simulation Results 

Initial Hypothesis: Region of stability increases as m increases. 
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Ω (relative frequency) 
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Signal Block Diagram 

Controller 

Software 

Shaker (Plant) 
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Camera 



Experimental Setup 



Experimental Parameters 

Pendulum characteristics 
L1 

L2 

L1 = 8.1cm   

L2 = 3.8 cm 

r = 3.1cm 

I/M = 23cm2 
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Experimental Procedure 
 
We began by trying to stabilize the pendulum at a 26 Hz forcing 
frequency, increasing the acceleration until the pendulum was stable 
in the upright position 
 
Once we’d found a stable point, we perturbed it, to measure the 
dynamics around the fixed point, including oscillation frequency and 
damping. 
 
We then varied the driving frequency from 20 to 50Hz, and the 
eccentricity m from 0 to 0.999. At each node, we first attempted to 
stabilize the pendulum by setting the acceleration as high as the 
amplifier would safely allow, then decreasing the peak acceleration 
until the pendulum was no longer stable. We recorded this 
acceleration, as well as the vertical displacement of the shaker. 



Tracking the Pendulum 

Inverted pendulum at 26Hz, m=0.999, 80g 

 

Stable pendulum is perturbed, bounces off rails, then spontaneously regains stability. 
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Movie Slide 



Acceleration vs. Frequency 

For each m, the acceleration required for stability is a linear function of the frequency 

Stable 

Unstable 



Displacement vs. Frequency 

For each m, displacement had inverse relationship with frequency 

Stable 

Unstable 



Displacement vs. Periodic Frequency 

Adjusting to periodic frequency eliminates any differences from eccentricity 

Stable 

Unstable 
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Experimental setup does not match initial 
model 

•LabView controller enforces fixed period on the forcing function 

•cn(t,m) has period as a function of m 

•We measure amplitude of displacement 

•The displacement amplitude of a body accelerating as cn(t,m) 

cannot be calculated trivially  



Determine Proper 
Scaling/Stretching 

We want the vertical displacement of the pivot, 

         , to have the following properties:  

• Should be       periodic 

•    

 

•   


f (t)



2



f (0) 1, f


2









 0, f   1, f

3

2









 0



t 0,2 
max f (t) 1,

t 0,2 
min f (t)  1



First, fix the period 

                

 

where 

 

 

 

has period 



2



cn
T(m)

2
t,m













T(m)  4
d

1msin20

2





Now find scaling  
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creates unit-amplitude displacement 
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End Result for m=0.9999  

                

 

 



Revised Model 

With the scaled and stretched Jacobi Elliptical function, our 

equation of motion is now: 
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This is consistent with Blackburn for m=0. 



Now, fit numerical parameters to 
match experiment  
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New stability diagram 



Caveats 

•Search for boundary of stability lacks robustness 

•Only considers one initial condition for each point 

•Integrates for an arbitrary time (1000 periods of forcing function) 

•Does not quite reach the “true” edge of stability 

•Damping does not seem to match qualitatively between model and 

experiment 

•Numerical results seem to be more sensitive (with regard to stability) 

than experimental results. 

•Experimental stability criterion is somewhat subjective 



Conclusion 
We were able to determine the regions of stability of the forced inverted 

pendulum, with results similar to Blackburn et al, 1992. 

 

Varying m in the Jacobi elliptical did not significantly alter the region of 

stability of the inverted pendulum. 

 

This was indicated by both numerical and experimental results. 



Future Work 

Examine the basin of attraction experimentally (requires more complicated 

apparatus). 

 

Use the Jacobi elliptical function in displacement instead of acceleration 

function. 
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