
Journal of Physics 6268  Shapero et al. 2010  

   1

 
 
Stabilization of an inverted pendulum via periodic forcing  
 
Samuel A. Shapero*, Yiwei Chang, Robert Hayward 
*Primary Author, samshap@gatech.edu Department of Electrical and Computer Engineering, Georgia Institute of Technology 

 
Abstract 
We reconstruct a model for an inverted pendulum with periodic vertical forcing. By integrating with a ODE solver in 
MATLAB, we calculate the regions of stability for the pendulum. We hypothesize that modifying the vertical 
perturbation to a Jacobi Elliptic function will increase the region of stability, and verify with initial simulations. An 
inverted pendulum is mounted to a shaker table, perturbed with periodic, controlled accelerations. Displacement is 
tracked via a high speed camera, and used to determine natural frequency and damping. We modify the model to 
remedy discrepancies between numerical and experimental data. A precise relationship between frequency and amplitude 
emerges at the boundary of stability, and we create an original analytical derivation that explains it. We conclude that for 
similar displacement and frequency, modifying the eccentricity of the Jacobi Elliptic function has no effect. 
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1. Introduction 
 The pendulum has long been an object of 
fascination and great import to physicists, as it 
represents the basic building block of any rotating 
system in a constant gravitational field. It also has 
many dynamical properties of interest to the 
mathematician. Under different forcing 
conditions, a pendulum may approach a stable 
fixed point, may oscillate, rotate around its axis, or 
even behave chaotically. 
 The inverted pendulum is a special case where 
the pendulum’s center of mass is stabilized above 
the axis of rotation. Inverted pendulums occur in 
civil engineering wherever a tall structure, such as 
a crane [2], needs to be balanced. In 
biomechanics, balance in bipeds is modeled by an 
inverted-pendulum, and artificial control for 
stability could be used to compensate for the 
natural loss of balance that occurs with age [6,7]. 

Our primary objective was to investigate the 
theoretical model of the vertically forced inverted 
pendulum, and to determine its regions of 
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Figure 1. Stability diagram for a vertically forced 
pendulum [1], as a function of relative frequency 
and relative amplitude of the forcing oscillation. 
The up arrow indicates stability for an inverted 
pendulum, while the down arrow indicates stability 
for a non-inverted pendulum. High amplitude 
vibrations will only result in rotation. 
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stability. We hypothesized that modifying the 
forcing function to have high order harmonics 
would increase the region of stability. We sought 
to test this hypothesis numerically and empirically. 
 
2. Model and Literature Review 
 Forced pendulums have been studied 
extensively, and their attractors and bifurcations 
have been extracted by mathematical analysis 
[4,5], computer simulation [1,3], and physical 
experimentation [10]. It is well established that 
the inverted pendulum can be stabilized under 
high frequency vertical vibrations. Blackburn et al. 
[1], and Smith et al. [10] investigated the 
vibration parameters necessary for stabilization. 
 The vertically, periodically forced inverted 
pendulum can be modeled as 

)sin()'()sin( θωθθβθ tFMrgI =−+ &&&  (1), 
where θ  is the angle from the apex, I is the 
pendulum’s moment of inertia, β  is the damping 
coefficient, and )( tF ω  is a periodically applied 
force with frequency .ω  By setting 'tt ω=  and 
defining IMrg=2

0ω  as the natural frequency of 
the pendulum, we can rewrite (1) as 
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 Blackburn et al. used a sinusoidal forcing 
function 

)cos(*)( tr
atF =  (3), 

 where a  is the amplitude of the externally 
applied oscillations, and r*=I/Mr. Blackburn et al. 
calculated the regions of stability while varying 

0ωω=Ω , and *ra=ε , the normalized frequency 
and amplitude (Figure 1). Their analysis, however, 
used simplifying assumptions that reduced (2) to a 
linear equation.  
 Levi et al. [4] went a step further, proposing 
parabolic oscillations. These permitted completely 
linear behavior for each cycle, allowing for an 
intuitive proof of stability for certain frequencies. 
Sanjuan [8,9]  noted that the true dynamics of the 
pendulum are nonlinear, corresponding to Jacobi 
Elliptical trajectories in phase space (see Appendix 
A). Thus they decided to use the Jacobi Elliptical 
function cn as a forcing function: 

),()( mtcnr
atF =  (4) 

 They found that varying the eccentricity 
factor m in the Jacobi Elliptical function could 
lead to bifurcations in the periodicity of the 
damped pendulum (Figure 2). This degree of 
freedom would allow a user to choose between 
periodic, quasi-periodic, and chaotic dynamics 
even when the relative amplitude and frequency of 
the external force were fixed. 
 
3. Methods 
3.1 Numerical Simulations 
 We first decided to simulate the inverted 
pendulum (2) with forcing equation (4). We 
varied three parameters in our simulations: the 
Jacobi Elliptic factor m, varied between 0 and 1; 
the relative amplitude ε, which ranged up to .5; 
and the relative frequency, which ranged up to 

100. The relative drag 
ω
β
I

 was set to a constant 

0.1 to have only a minor effect on the dynamics, 
while still providing damping. 

Figure 2. Periodicity of the Damped Pendulum 
with Jacobi Elliptical forcing [9]. 0<m<1 
determines the shape of the forcing waveform, and 
γ is the relative amplitude of that perturbation. 
Negative γ indicate inverted operation. Black 
regions indicate chaos, white regions periodic or 
stable behavior. 
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 Simulations were performed in Matlab, using 
the 4th order Runge-Kutta ODE solver, ode45. 
Our model was fundamentally a third order 
system, with t, θ  and θ& as distinct independent 
variables. Since the effect of t was periodic, we 
created a two-dimensional Poincaré map by 
sampling θ  and θ& once every period, where 

( ))(),( nTnTPn θθ &=    (5),  
and T was the period of the Jacobi Elliptic 
function (see Appendix A). 
 Figure 3 illustrates the trajectory of a 
pendulum with sinusoidal forcing, initial position 
0.2 radians from center, and initial angular 
velocity of 0 rad/s. The Poincaré map and 
temporal dynamics are shown to make the 
dynamics more clear. 

 In order to find the boundaries of the region 
of stability (as in Figure 1), we simulated the 
trajectory at a variety of eccentricity and relative 
frequency values. At each node of eccentricity and 
frequency, we performed a binary search of 
relative amplitudes, allowing us to zoom in on the 
stability boundary. Figure 4 shows the region of 
stability we calculated, and demonstrates that, for 
our given modeling assumptions, a more eccentric 
forcing function will produce a larger region of 
stability. 
 
3.2 Experimental Setup 
 In order to verify the accuracy of our Matlab 
simulations, we set up an inverted pendulum arm 
on a shaker table with controllable acceleration. 
Figure 5 illustrates the setup, including a block 
diagram showing the method of control and 
observation. The shaker table was attached to a 
magnetic actuator that converted an electrical 
signal into mechanical force, similar to a speaker. 
 An ADXL321 accelerometer was mounted to 
the underside of the shaker, in order to monitor 
the acceleration for feedback and recording. A 
signal of 50mV per g of acceleration was sent to a 
computer with a Labview testbench that 

Figure 3. Stable dynamics in the phase plane for 
the inverted pendulum with sinusoidal forcing. 
Pendulum is upright when θ = 0. Since the system 
is actually three dimensional, a two dimensional 
mapping onto the phase plane (top) is hard to read. 
By sampling every period (middle) we can show the 
evolution of the Poincare map in the phase plane. 
We also include the temporal dynamics (bottom). 

 
 
Figure 4. Boundary of stability for inverted 
pendulum with Jacobi Elliptic forcing. For each 
value of m, the stable region is above the curve. 
This preliminary model shows that increasing the 
eccentricity m of the forcing function enlarges the 
region of stability. 
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controlled the waveform. The software controlled 
the amplitude of each harmonic component 
separately, permitting a wide range of waveforms, 
including Jacobi Elliptics of varying eccentricity. 
This signal was then broadcast to an VTS-500 

high powered amplifier, which boosted the signal 
to the level necessary for the shaker. Acceleration 
data was also sent to an oscilloscope, from which 
the peak acceleration could be monitored 
independently of the controller. 

 
(c) 

Figure 5 Apparatus for controlling inverted pendulum. (a) The shaker table, with the signal input, accelerometer 
output, and inverted pendulum mounted on top. A camera is mounted in front, and tracks the white spot painted 
on the pendulum. A light is projected on the pendulum to help the spot stand out. (b) A close up of the pendulum, 
mounted on the shaker. Bumpers were added to restrict the range of motion. (c) Block diagram of the control 
scheme. A software controller implemented in Labview outputs the desired waveform, based on feedback from the 
accelerometer. The waveform is amplified by an VTS-500 high powered amplifier and sent to the shaker table. The 
acceleration from the shaker table is transmitted to the sensor, an ADXL321 accelerometer, which feeds back to the 
controller, and to an oscilloscope (acting as a sanity check for the amplitude of accelerations). The acceleration is also 
transmitted to the fulcrum of the inverted pendulum, causing the desired dynamic equation. A high speed camera 
observes the motion of the pendulum and sends the video to a second Labview testbench, which records the x and y 
position of the white spot. 
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 During our experiments we had some trouble 
with the controller, which had difficulties 
managing the amplitude of the signal correctly in 
real time. As a result, we would often first run the 
controller to have the right waveshape, and then 
disable any further change. To modulate the 
amplitude of acceleration, we relied on the 
variable gain knob of the amplifier. 
 The inverted pendulum itself consisted of a 
3.8cm x 11.9cm aluminum arm, with a fulcrum 
centered 1.9cm from one end (see Figure 5b). The 
arm was 6.4mm (1/4”) thick, except for a 3.8cm x 
3.8cm square centered about the fulcrum having 
twice the thickness. The total mass of the arm was 
approximately 80g, the radius of the center of 
mass r was 3.1cm, and its moment arm (I/M) was 
23cm2. The natural frequency of the arm 0ω was 
11.5 radians per second (rad/s) and the effective 
radius r* was 7.4cm. For data collection purposes, 
the arm was covered in black paper, and a spot of 
white-out was centered 7.1cm from the fulcrum. 
 
3.3 Data Collection 
 A high speed camera was mounted directly in 
front of the pendulum, and took photos at up to 
200 frames per second (fps). The higher speeds 
caused erratic frame rates, so the camera was 
generally operated at 100 fps. The images were 
sent to a second computer with a Labview tracking 
program. The program applied a threshold of 
luminance to identify the spot, and tracked the 
centroid of the spot within a torus section selected 
by the user. The program was able to track the 
relative x and y position of the dot, from which 
the angle of the pendulum could be extracted. 
While the pendulum was in the stable inverted 
position, the vertical displacement of the 
pendulum equaled the vertical displacement of the 
shaker table, and so could be used to determine 
the amplitude of the forcing displacement. 
 To determine the region of stability, we 
recapitulated our procedure from the numerical 
trials. We varied the driving frequency from 20Hz 
to 50Hz, and the eccentricity from 0 to 0.999. At 
each node, we attempted to increase the 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Motion of a stable inverted pendulum. 
(a) Experimental results. The pendulum begins 
stable, then at t=8s is pushed by the tester. The 
pendulum bounces off the bumpers until t=13s, 
where self-stabilizes back to the inverted positon. 
Residual vertical oscillation is due to the forcing 
function, with m=0.999, f=26Hz, p-p accel=80g.  
(b) Comparison of recorded horizontal 
displacement with initial model of inverted 
pendulum with linear damping. Note the 
exponential decay in the model. (c) Comparison of 
recorded horizontal displacement with improved 
model of damping as a frictional torque, with a 
relative value of .155rad/s2. Note that the 
experimental data stabilizes off center, due to static 
friction, which was not included in the model. 
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acceleration until the inverted pendulum became 
stable in the upright position. For those nodes that 
we could stabilize, we then decreased the 
acceleration slowly until stability was 
spontaneously lost. We then returned the 
pendulum to stability and recorded the 
acceleration and the displacement of the forcing 
function. This process had two main sources of 
noise: it was difficult to fine tune the acceleration 
to within 1g; at the boundary of stability, it was 
sometimes subjective whether the pendulum was 
truly stable. 
 
4. Results 
 Figure 6 illustrates a typical response of the 
stable inverted pendulum. We used these curves to 
calculate the damping coefficient and the natural 
frequency. Unfortunately, our initial numerical 
model proved a poor fit for the dynamics of the 
real system. Whereas the model predicted an 
exponential decay of oscillations around a stable 
fixed point, we observed an almost linear decay. 
 We observed several other strange behaviors 
that our model did not predict. Forcing 

accelerations close to the boundary of stability, for 
example, would sometimes produce a stable fixed 
point that was non-vertical. At other times, it 
would induce a chaotic wobbling behavior around 
the vertical position. Both of these contravened 
the model, which only predicted a stable fixed 
point at the vertical position. 
 The boundary of stability itself was 
characterized by two trends: a linear relationship 
between the frequency and the peak-to-peak 
acceleration, and an inverse relationship between 
peak-to-peak displacement and frequency (Figure 
7). Both of these trends indicated that stability was 
determined by the velocity of the signal, 
irrespective of frequency, since, for a periodic 
signal ωω 1)( ∝txC , the velocity was constant: 

1)(')( ∝∝= xtxtx
dt
d ωωωω  (6); 

Matching the data, the acceleration was: 

ωωωωω ∝∝= xtxtx
dt
d 22

2

2

)('')(  (7). 

 Because both displacement and acceleration 
were limited by our system, these dependencies 
limited the range of stabilizable frequencies. Low 

    
   (a)      (b) 
Figure 7. Stability regions of the inverted pendulum. (a) Stability as a function of peak-to-peak acceleration of the 
forcing function. The data points are the minimum accelerations that stabilized the inverted pendulum, and the 
curves are the best linear fit. For each m, the region above the curve is stable, and the region below is unstable. The 
required acceleration for stability scales linearly with frequency, and increases monotonically with m, proportional to 
1/s(m) (see Appendix B). Note that the inverted pendulum can only be stabilized at 50Hz when m = 0.999. (b) 
Stability as a function of peak-to-peak displacement.  Data points are fit to the closest inverse curve. Again, only the 
region above the curves is stable. The required displacement scales inversely with frequency, while it appears that m 
has not effect. 
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frequencies would require displacement larger 
than the 2.6cm the shaker table would allow. 
High frequencies would require accelerations 
beyond the driving capabilities of the amplifier. 
 In contradiction to our original model in 
Figure 4, the eccentricity m had no noticeable 
effect on the displacement required to stabilize 
each frequency (Figure 7b). Any dependency that 
might have existed was confounded by our noisy 
measurement procedure. The eccentricity did have 
other effects, however; the peak acceleration 
required to stabilize the inverted pendulum at a 
given frequency rose monotonically with m. At the 
same time, the maximum achievable acceleration 
rose even faster with m. This allowed us to 
stabilize the pendulum at much higher frequencies 
for m=0.999 than for m=0 (Figure 7a). This may 
have been due to the power spectrum being 
divided between multiple harmonics for high m.  
 
5. Discussion 
5.1 Improving the Model 
 The experimental data contradicted two 
important parts of our preliminary model. First 
the decay of oscillations around the stable fixed 
point indicated that our damping model was 
incorrect; the linear decay of the oscillations 
strongly suggests that damping was due to a 
constant torque opposite the direction of motion. 
 Friction at the bearing could account for the 
linear decay in Figure 6a, since it is independent 
of the angle and angular speed of the pendulum 
(although its sign should always be opposite the 
angular velocity). By replacing the drag torque in 
(1) with a dynamic frictional torque of magnitude 
k, our dynamical equation becomes: 

)sin()'()sin()( θωθθθ tFMrgksignI =−⋅+ &&&  (8). 
And renormalizing with 'tt ω= , this becomes: 

0)sin()(1)( 22 =⎟
⎠
⎞

⎜
⎝
⎛ −
Ω

−
Ω

+ θθθ tFsignK &&&  (9), 

where MrgkIkK == 2
0ω  and 0ωω=Ω . In the 

special case where 0=θ& , we use a static friction 
term that negates all forces below a threshold FS. 
Comparing the numerical simulation with the 
experimental data allowed us to deduce a best fit 

value for K. Figure 6c shows the results of this 
improved mapping. 
 Another problem with our model was the 
scaling of the Jacobi Elliptical function, both in 
frequency and amplitude. Our original model did 
not account for the elongated period of the 
Elliptical function when m > 0. Additionally, we 
used the simplifying assumption that amplitude of 
displacement was 21 ω times the amplitude of the 
acceleration. For cn(t, m > 0), this is not the case, 
because it contains higher order harmonics that 
are attenuated by more than 2ω . We denote the 
new, scaled version of cn(t,m) as J(t,m), defined in 
Appendix B. 
 Substituting this term into (9), we generate: 

0)sin(),(1)(
22

=⎟
⎠
⎞

⎜
⎝
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Ω

−
Ω

+ θεθθ mtJsignK &&&  (10), 

except for the special case where 0=θ& .  
 
5.2 Stability Analysis 
 The introduction of a nonlinear damping 
term explains some very odd behaviors in our 
inverted pendulum. Perhaps the most surprising of 
these behaviors was the off-center quasi-stability 
we saw in the experiments. Whereas the 
Blackburn model [1] only identifies the symmetric 
up and down positions as stable fixed points, the 
inclusion of static friction allows (in fact 
guarantees) a fixed point off the center. Our 
normalized static equation is: 

0)sin(),(1
22 =⎟
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θε sin),(1,min 222 mtJFK SS  (12). 

For all cases where 

( ) θε sin),(1 2 mtJFS ⋅Ω−≥  (13), 

the equation is stable. Solving for θ : 

),(1
arcsin 2 mtJ

FS
C ⋅Ω−
=≤

ε
θθ  (14). 

So for all nonzero static torques FS, there exist 
degenerate fixed points in the range Cθθ ≤ , and 
unless we decay to exactly 0, our oscillations 
around 0 will cease as soon as they have an 
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amplitude less than Cθ . This off center 
stabilization is apparent in Figure 6c, where the 
experimental results end slightly off center. The 
model ends at the center, because it does not 
incorporate static friction (due to the difficulty of 
pinpointing zero velocity in a linear ODE solver). 
 The existence of these fixed points has several 
consequences for our stability model. For 
parameter values near the boundary of stability, 
the applied acceleration ),(1 2 mtJ⋅Ω− ε is 
minimal, and the deviation of the angle of stability 
from the center is maximized. As the relative 
amplitude or frequency of the forcing function is 
increased, the dynamics go further into the region 
of stability, and Cθ  approaches 0. This evolution 
of the phase space matches our empirical 
observations. 
 The lack of noticeable dependency on m in 
Figure 7b is easily understood by looking at Figure 
10. Even an eccentricity as large as 0.9999 – far 
beyond our experimental range – results in an 
essentially sinusoidal displacement. So as long as 
we are in the displacement domain, we see little 
dependence on m. If we use maximum 

acceleration as a parameter (as in Figure 6a), then 
the amplitude scaling )(mρ  (from Appendix B) 
exactly accounts for the dependency on m. 
 Both the numerical and experimental results 
showed stability dependent on the product of the 
amplitude and frequency of the forcing function. 
This boundary can be derived analytically, with 
some simplifying assumptions. We will set 

θθ sin≈ , use (3) as our forcing function, and drop 
the frictional torque. Our system is now 

θωωθθ )cos(2 tMraMrgI −=−&&  (15). 
At the boundary of stability the forcing function 
counteracts gravity sufficiently that we have an 
unstable limit cycle with period ωπ2 . By double 
integrating the right side of (15) we generate a first 
pass deterministic approximation for )(tθ of: 

⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛+= )cos(

*
1sin)cos(

*
)( 00 t

r
at

r
at ωθθωθθ  (16). 

Plugging this back into (15) we get: 

⎟
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⎞
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g
aMrgI ωωωθθ&&  (17). 

The unstable limit cycle exists when the double 
integral over the period – the change in location 
after one period of the forcing function – is zero. 
If  0<Δ θθ , then the pendulum will eventually 
stabilize at 0=θ . If 0>Δ θθ , the pendulum will 
eventually fall away from the inverted position. 
Therefore the equality ∫∫=Δ=

T

dt 20 θθ && is true at 

the boundary of stability. This expands to: 

∫∫ ⎟
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Integrating, we get: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

*2
1

2
0

222

gr
aT ω  (19), 

which solves to : 
*2 gra =ω (20). 

This curve maps well to our data, as can be seen in 
Figure 8. If we convert to relative amplitude and 
frequency, (20) becomes: 

2=Ωε (21), 
which exactly corresponds to the boundary of 
stability found by Blackburn et al. in Figure 1. 

Figure 8. Experimental versus analytically derived 
boundary of stability. The analytical fit is from(20), 

*2 gra =ω . Discrepancies between the 
analytical and experimental results could be due to 
noisy measurement mentioned in Section 3.3. 
Additionally, there may be some small dependency 
on m that the analysis did not take into 
consideration. This may account for why the low m 
track better to the curve than the high m. 
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6. Conclusion 
 We were able to successfully determine the 
boundary of stability for an inverted pendulum, 
both numerically and experimentally. We 
extended the traditional parameter space of the 
inverted pendulum by using a Jacobi Elliptical 
forcing function with scalable eccentricity. While 
we expected that this would increase the region of 
stability, we found no measureable effect of 
forcing eccentricity on the boundary of stability. 
 We did find analytical justification for the 
shape of the boundary of stability. Inclusion of 
friction in our model was vital for understanding 
the non-exponential decay and off-center 
stabilization that we observed. 
 One valuable addition to our research would 
have been an estimation of the basin of attraction 
for the stable fixed points. An inability to fix the 
position and angular velocity during operation 
rendered such a study infeasible, but perhaps such 
an apparatus could be built in a future experiment. 
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Appendix A. Jacobi Elliptical Functions 
 The Jacobi elliptical function cn(u,m) is 
defined as follows: Let 

∫
−

=
φ

θ

θ

0
2sin1 m

du  (A.1), 

then φcos),( =mucn . The eccentricity 
parameter m is bounded from 0 to 1. At the limits 
of m, cn(u,0) = cos(u), and cn(u,1) = sech(u). For 
m > 0, the period will necessarily be longer than 
2π. The period T is defined by the Elliptic 
Integral, 

∫
−

==
2/

0
2sin1

4)(
π

tm

dtmKT  (A.2). 

Figure 9 displays the waveform of cn(t.m) for 
several values of m. 
 
Appendix B. Scaled Elliptical Function 
 Our experiment assumes the relative 
frequency Ω, relative displacement €, and 
eccentricity of the Jacobi Elliptical to be 
independent parameters. In order for this to hold 
true in our model, we must scale the Jacobi 
Elliptical forcing function so that J(t,m) provides a 
consistent displacement amplitude of 1 and a 
consistent period of 2π for all valid values of m. 
 Scaling the frequency is easily done. Since we 
already know the period of cn(t.m) is K(m), we 

 
Figure 9. Jacobi elliptical cosine cn(t,m) for various 
values of m [9]. The period increases monotonically 
with m.
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simply scale t by K(m)/2π to fix the period to 2π. 
Scaling the displacement requires numerical 
double integration of the Jacobi Elliptical at each 
value of m (an acceleration term) to determine the 
corresponding amplitude of displacement. After 
this scaling, we can define 

),
2

)(()(),( mtmKcnmmtJ
π

ρ=  (B.1),  

where 

∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛

= 2

0 0

,
2

)(
1)( π

π

ρ
t

dudtmumKcn
m  (B.2). 

 
Figure 10 shows the Scaled Jacobi Elliptical when 
m = 0.9999. 
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Supplemental material, including a picture of the group 
members and videos of the inverted pendulum in 
action, can be found at our website 
invertpend.wordpress.com. 

Figure 10. Scaled Jacobi Elliptical acceleration and 
the derived displacement. Even for m as eccentric as 
0.9999, the displacement has an amplitude of 1 and 
a frequency of 2π. 


