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Abstract 
 
We investigate the dynamics of an inverted pendulum subjected to Jacobi elliptic forcing 
both numerically and experimentally.  In so doing, we hope to provide a coherent picture 
on stability of an inverted pendulum subjected to forcing that ranges from harmonic to 
nonharmonic in nature. We are able to determine the regions of stability of a sinusoidally 
forced inverted pendulum, with results similar to earlier literature.  Most importantly, we 
have numerically and experimentally shown that varying the eccentricity in the Jacobi 
elliptical function does not significantly alter the region of stability of the inverted 
pendulum. 
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1. Introduction 
 

The pendulum is a paradigm of contemporary nonlinear dynamics.  The simple 
pendulum only has one stable state: the vertically down orientation.  However, it has been 
shown experimentally and numerically that if gravity is modulated at a frequency greater 
than the natural frequency of the pendulum, three different equilibrium states are 
possible: (a) stationary vertically down, (b) stationary vertically up and (c) continuous 
rotation either clockwise or counterclockwise. Several authors have discussed the 
inverted pendulum theoretically [1,2,3].  Through numerical simulations, Blackburn et al. 
[1] studied the dynamics of the inverted pendulum whose pivot is subjected to harmonic 
vertical displacement.  The authors modulated the effects of gravity on the pendulum by 
vertically modulating the pivot position and found that the stationary vertically up state is 
possible when the pivot is subjected to high frequency oscillations.  They also found that 
beyond critical amplitude of pivot oscillation, the stable inverted state is lost and the 
system undergoes Hopf bifurcation leading into a flutter mode.  The numerical findings 
of Blackburn et al [1] have been experimentally validated by Smith and Blackburn [5]. 

In contrast to the inverted pendulum subjected to harmonic forcing, the dynamics 
of an inverted pendulum subjected to nonharmonic forcing remain uncertain.  For simple 
nonlinear oscillators such as the pendulum, the solutions are Jacobi elliptic functions.  
Therefore, it has been proposed that these functions be used as drivers instead of 
harmonic function.  Sanjuan [4] forced a nonlinear pendulum with a Jacobi elliptical 
function and showed that it is possible to switch the periodicity of a solution by altering 
the waveform and periodicity of the driving function, without making alterations to the 
rest of the system parameters.  However, to our knowledge, to date, there have been no 
studies that investigate the dynamics of an inverted pendulum subjected to Jacobi elliptic 
forcing. 

We investigate the dynamics of an inverted pendulum subjected to Jacobi elliptic 
forcing both numerically and experimentally.  In so doing, we hope to provide a coherent 
picture on stability of an inverted pendulum subjected to forcing that ranges from 
harmonic to nonharmonic in nature.  Among the questions we propose to explore are: 
What amplitudes and frequencies of periodic forcing allow the inverted pendulum to 
remain upright (i.e. what are the regions of stability)?  Does the region of stability change 
when additional harmonics are added to the forcing function?  Can our theoretical 
findings be validated through laboratory experiments? 
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2. Method 
2.1.1. Experimental Setup 
 

 
Figure 1. Schematic representation of the experimental setup. 

 
 Figure 1 describes the overall experimental setup.  We control the function 
generator with a Labview module that allows us to specify the amplitude, frequency and 
eccentricity (m) of the waveform created by the function generator, thereby allowing us 
precise control over all parameters.  The function generator is connected to an amplifier, 
which ultimately sends the amplified signal into the single vibrator system, VTS 500 
(Vibration Test Systems, Ohio, USA).  The system operates within stroke limits of 1" 
peak to peak, and has a maximum velocity rating of 45 in/sec, and the force limits of 500 
lbf (which means we can safely drive a 500 lb load at an acceleration of 1 g).  Rated 
frequency of the system is between 2 Hz to 5 kHz.  Additional information on the specs 
of the system can be found here: http://vts2000.homestead.com/files/singlev.htm.  VTS 
500 can be programmed to produce harmonic and 
nonharmonic vertical displacements.  

The pendulum and its pivot are mounted to an 
aluminum plate that is secured to a single vibrator 
system. The pendulum’s rotation from the inverted 
position is limited by two rubber barriers, both about 
π/2 radians from the vertical.  The pendulum is 
essentially an aluminum bar and has the following 
physical characteristics: L1 = 8.1 cm; L2 = 3.8 cm; 
radius of center of mass, r = 3.1 cm, effective radius, 
r* = 7.4 cm and moment arm, I/M = 23 cm2 (Figure 2).  
Natural frequency of the pendulum is calculated to be 
11.5 rad/s.  Accelerometer is attached to the bottom of 
the aluminum plate to record vertical acceleration of 
the plate and pendulum with time.  The signals are 

Figure  2. Picture  of  the  pendulum 
used in the experiment. 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also been fed to an oscilloscope to ensure that the output waveform produced by the 
function generator is correct. 

We cover the pendulum with black color paper and painted a white dot on at the 
top center of the bar.  The motion of the white dot represents the displacement of the 
pendulum in x-y plane.  The motion is recorded by a high-speed camera and tracked by a 
point tracker program, which is written in Labview.  In this case, left-right motion of the 
pendulum represents displacement in the x-plane, while up-down motion of the pendulum 
represents displacement in the y-plane. 
 
2.1.2. Experimental Procedure 
 

The laboratory experiment is designed to validate the results of our numerical 
study (described below).  We experimentally determine the stability of the pendulum for 
values of driving frequency and acceleration that are within the physical limits of our 
system.  We began by trying to stabilize the pendulum at a 26 Hz forcing frequency, 
increasing the acceleration until the pendulum was stable in the upright position.  Once 
the inverted pendulum is stable, we perturbed it, to measure the dynamics around the 
fixed point, including oscillation frequency and damping.  The damping coefficient of the 
system is calculated by iteratively adjusting the value of Q (Eqn 5) until the simulated 
displacement time series matches the observed displacement time series.   

We then varied the driving frequency from 20 to 50Hz, and the eccentricity m 
from 0 to 0.999. At each node, we first attempted to stabilize the pendulum by setting the 
acceleration as high as the amplifier would safely allow, then decreasing the peak 
acceleration until the pendulum was no longer stable. We recorded this acceleration, as 
well as the vertical displacement of the shaker.  To test the stability of the pendulum, we 
perturbed it gently when it comes to the inverted position.  If the pendulum returns to the 
inverted position or does not fall over during the period of observation (~ 1 - 2 min), we 
classify the node as stable. 
 
 
2.2.1. Model Structure 
 

General equation of motion for a pendulum subjected to 
vertical harmonic forcing is: 
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which describes the motion of a pendulum consisting of a mass m 
fixed at a distance r from a pivot which is subjected to a vertical 
harmonic forcing, 

! 

y = Acos("t)  (Figure 3).  θ is the angular 
coordinate of m measured counterclockwise from the down 
position.  b is the damping coefficient and I is the total moment of 
inertia of the system.   By normalizing time according to the 
transformation ωt --> t, Equation (1) is converted to:  
 

Figure 3. Schematic of 
a  pendulum  whose 
pivot  is  subjected  to 
sinusoidal forcing. 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To create non-sinusoidal forcing we 

use the Jacobi elliptic function.  Specifically, 
we use a cosine amplitude Jacobi elliptic 
function cn(ωt, m) of frequency ω and elliptic 
parameter m.  There are two limits for m: 
when m = 0, the trigonometric function, cos 
ωt results, when m = 1, sech ωt results.  
Figure 2 shows how the cn(ωt,m) changes for 
some values of m.   

We scale the Jacobi elliptic function 
such that the vertical displacement of the 
pivot accelerating as cn(ωt,m) is 2π periodic 
with mean of 0 and amplitude of 1.  The 
scaling is necessary to account for the 
elongated period of the elliptical function 
when m > 0.  The modified the Jacobi elliptic 
function is described as follows: 
 

 (4)
  
 
where ρ(m) is a scaling function and is: 
 
 
 
 
 
and T(m) is the period of the signal: 
 
    
 
 
 
By replacing the sinusoidal forcing function in Eqn (3) with Eqn (4), Eqn (3) now takes 
the following form: 
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Figure  4. The  variation  of  the  cn(t,m)  vs  time 
for some values of m. The waveform and period 
of the wave changes as m is varied. 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(5)      
 
2.2.2. Model Simulations 
 

We first verify the stability regions for the inverted pendulum as given by 
Blackburn et al. [1], selecting parameters both inside and outside the region.  
Specifically, for a simple cosine case (i.e m = 0), we vary the relative relative amplitude 
ε, between 0.01 to 0.1 and the relative frequency from 15 to 55.  Next, we modify the 
Jacobi elliptic parameter m and simulate with the same amplitude and frequency used for 
the simple cosine case.  If any changes in stability occur as m is increased, then we will 
attempt to find the new boundary between the stable and unstable regions.  To simulate 
the dynamics of the inverted pendulum, we transformed Eqn (5) into 2D system of 
differential equations: 
 
 
 
 
 
 

Simulations are performed in Matlab, using the 4th order Runge-Kutta ODE 
solver, ode45.  We vary three parameters in our simulations: the Jacobi Elliptic factor m, 
varied between 0 and 1; the relative amplitude ε, which will range from 0.01 to 0.1; and 
the relative frequency, which range from 15 to 55.  For each point in the parameter space, 
we start the simulation with an initial condition of θ = 0 and perform integration for 1000 
periods of the forcing function.  At the end of simulation, if the pendulum remains in an 
inverted state, the point is considered as stable.  As we sweep through the parameter in a 
similar manner, we develop the stability diagram. 
 
3. Results 
3.1 Experimental Results 
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Figure 5. Scatter plot of stable points at the stability boundary as a 

  function of forcing acceleration and radial frequency. 
 

Figure 5 is a scatter plot of stable points at the stability boundary for each value of 
m as a function of forcing acceleration (in units of gravitational acceleration - g) and 
radial frequency (rad/s).  Best-fit lines for each value of m is fitted base on the data 
points.  For each value of m, the forcing acceleration required for stability is a linear 
function of the frequency.  Results also show that the lower the value of m, the smaller 
the region of stability and vice versa. 
 

 
Figure 6. Scatter plot of stable points at the stability boundary as a  

  function of vertical variation and radial frequency. 
 

Figure 6 shows the scatter plot for the same experimental data points for each 
value of m, but as a function of vertical variation (cm) and radial frequency (rad/s).  In 
this plot, for each value of m, displacement has inverse relationship with frequency.  

Stable 

Unstable 

Stable 

Unstable 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Results also show that the lower the value of m, the smaller the region of stability and 
vice versa. 
 

 
Figure 7. Scatter plot of stable points at the stability boundary as a  

function of vertical variation and period frequency.          
 

Figure 7 shows the scatter plot for the same experimental data points for each 
value of m, but as a function of vertical variation (cm) and period frequency (Hz).  Period 
frequency is equal to radial frequency/2π.  In this plot, for each value of m, displacement 
has an inverse relationship with frequency.  However, unlike earlier results, there are no 
significant differences between the regions of stability for the different values of m. 
 
 
3.2 Simulation Results 
 

 
Figure 8. Simulated signal damping (red) and observed signal damping (blue). 

 

Unstable 

Stable 



  10 

We iteratively adjusted the value of Q in the equation of motion until a good fit is 
obtained between the simulated displacement and observed displacement (Figure 8).  The 
value of Q is found to be 11 for this system. 
 

 
Figure 9. Stability diagram for the inverted pendulum as a function of relative amplitude and 

 relative frequency.  Lines are the simulated results and symbols represent experimental 
 results. 

 
 Figure 9 shows the stability diagram for the inverted pendulum as a function of 
relative amplitude and relative frequency, based on simulation results. For each value of 
m, displacement has inverse relationship with frequency.  Similar to experimental results, 
there are no significant differences between the regions of stability for the different 
values of m.  Symbols in the diagram represent the actual data points.  Results clearly 
show that there is a constant offset between simulation and experimental results. 
 
4. Discussion 
 

We have numerically and experimentally shown that the degree of eccentricity 
(i.e value of m) of the Jacobi elliptical function does not significantly affect the stability 
of the inverted pendulum.  This is because it is the input acceleration that is modeled as a 
Jacobi elliptical function and not the input displacement.  The displacement amplitude of 
a body accelerating as cn(t,m) can be calculated by integrating the acceleration function 
twice.  During the process of integration, energy in other harmonics gets damped out.  As 
such, the waveform of the input displacement looks similar to a cosine wave (Figure 10).  
Figure 10 shows the waveform of the input acceleration (Jacobi elliptical, m=0.999), and 
the corresponding waveform of the input displacement obtained after scaling and 
integration.  
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Figure 10. Waveforms of input acceleration (red) and corresponding displacement (blue). 

 
While there are qualitative agreements between our theoretical and experimental 

findings, quantitative disagreements as shown clearly by the offsets between simulation 
and experimental results in Figure 9 suggest there are caveats to consider.  In our 
simulations, the search for the boundary stability lacks robustness.  We have only 
consider one initial condition for each point and have performed integration for each 
point for an arbitrary amount of time (1000 periods of forcing function).  As such, some 
points, which may become stable after a long time, have been considered unstable under 
our current scheme.  A better approach will be to take into consideration various initial 
conditions for each point and integrate for longer periods of time. 

Damping does not seem to match qualitatively between model and experiment.  
As clearly shown in Figure 8, the simulated damped signal only matches the observed 
damped signal in amplitude and phase for the first 10 seconds.  For the last 15 seconds, 
simulated damped signal does not match the observed damped signal in both amplitude 
and phase.  The linear decay of the observed oscillations suggests that damping is due to 
a constant torque opposite to the direction of motion.  By replacing the drag torque in our 
original equation of motion with a dynamic frictional torque of magnitude k, the equation 
of motion is now: 
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Figure 11. Simulated signal damping by the modified model (red) and 

  the observed signal damping (blue). 
 

The experimental stability criterion is somewhat subjective.  Our criterion for 
stability is that the pendulum must return to the inverted position or not fall over within 
the period of observation (~ 1-2 min).  However, it is possible that the pendulum does not 
fall over during the period of observation but falls over after a long period of time.  This 
may contribute to the errors observed.  A longer period of observation may reduce the 
errors observed. 
 Future work includes examining the basin of attraction both numerically and 
experimentally, which requires more complicated apparatus.  It will also be interesting to 
use the Jacobi elliptical function in displacement instead of acceleration function. 
 
5. Conclusion 
 
We are able to determine the regions of stability of the forced inverted pendulum, with 
results similar to Blackburn et al. [1].  Most importantly, we have numerically and 
experimentally shown that varying the eccentricity in the Jacobi elliptical function does 
not significantly alter the region of stability of the inverted pendulum. 
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our website http://invertpend.wordpress.com. 


